a2 United States Patent

Seitz et al.

US009448944B2

10) Patent No.: US 9,448,944 B2
45) Date of Patent: *Sep. 20, 2016

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

(58)

METHOD AND SYSTEM FOR DYNAMIC
TEMPLATIZED QUERY LANGUAGE IN
SOFTWARE

Inventors: Greg Seitz, Lake Oswego, OR (US);
Christopher J. Kasten, Rancho
Cordova, CA (US)

Assignee: PayPal, Inc., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/424,557
Filed: Mar. 20, 2012

Prior Publication Data
US 2012/0179720 Al Jul. 12, 2012
Related U.S. Application Data

Continuation of application No. 11/008,776, filed on
Dec. 8, 2004, now Pat. No. 8,200,684.

Provisional application No. 60/528,053, filed on Dec.
8, 2003, provisional application No. 60/528,237, filed
on Dec. 8, 2003, provisional application No.
60/528,238, filed on Dec. 8, 2003.

GOG6F 17/3048; GO6F 17/30545; GO6F
9/5016; GOG6F 12/0875; GOG6F 17/30336;
GOG6F 2212/465; Y10S 707/99933; Y10S
707/99944
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,226,146 A 7/1993 Milia et al.
5,530,799 A 6/1996 Marsh et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO0-9932996 Al 7/1999
WO WO-9933006 Al 7/1999
(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 11/007,061, Non Final Office Action mailed Aug. 23,
2007, 13 pgs.

(Continued)

Primary Examiner — Shew-Fen Lin

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

A system to automatically generate query language in soft-

Int. CL. ware is described. The system receives a request for data that
GO6F 17/30 (2006.01) is persistently stored in a database. The system selects a
GO6F 12/08 (2016.01) predefined query template from a number of query templates
GO6F 9/50 (2006.01) based on the request. The system utilizes the query template
U.s. CL to receive content from at least one different source, the first
CPC ... GO6F 12/0875 (2013.01); GOG6F 9/5016 source being a prototype data object. The system generates
(2013.01); GOGF 17/30017 (2013.01); a query statement based on the query template that includes
(Continued) the content. Finally the system queries the database using the
query statement to retrieve the requested data.
Field of Classification Search
CPC ..o GOGF 17/30017; GOGF 17/30477, 23 Claims, 44 Drawing Sheets
il
DDR
]
B
el =]
< o
TEM
DAO QUERY DATABASE
- e NGINE SERVER
A NG
“a| PRl m |“a P 3
()
. 4 &

US 9,448,944 B2
Page 2

(52) US.CL

CPC ..

(56)

5,590,366
5,734,887
5,778,178
5,822,758
5,897,634
5,909,570
5,937,402
5,953,716
5,970,490
5,978,581
5,987,500
6,016,497
6,047,284
6,047,295
6,134,559
6,167,402
6,212,556
6,237,003
6,279,008
6,289,358
6,351,808
6,385,618
6,427,195
6,457,003
6,476,833
6,526,412
6,594,669
6,611,838
6,694,321
6,701,381
6,728,840
6,741,997
6,748,374
6,789,170
6,825,848
6,850,950
6,892,173
7,020,660
7,039,764
7,096,229
7,167,874
7,171,692
7,185,016
7,302,447
7,350,192
7,406,464
7,725,460
7,779,386
7,890,537
7,904,487
8,046,376
8,122,009
8,176,040
8,200,684
8,291,376
8,301,590
8,429,598
8,515,949
8,898,147
8,954,439
8,996,534
2002/0091702
2002/0184612
2003/0005342
2003/0037076
2003/0050863
2003/0069880

.. GO6F17/3048 (2013.01); GO6F 17/30336
(2013.01); GOG6F 17/30477 (2013.01); GO6F
17/30545 (2013.01); GOGF 2212/465
(2013.01); Y10S 707/99933 (2013.01); Y10S
707/99944 (2013.01)

U.S. PATENT DOCUMENTS

> e e > e 0 > 0 e >

e

BL*

Bl
Bl
Bl
Bl
Bl
Bl
BL*
B2
Bl
Bl
B2
Bl
Bl
Bl
Bl
Bl
Bl
Bl

Bl
B2
B2
Bl

B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al

References Cited

12/1996
3/1998
7/1998

10/1998
4/1999
6/1999
8/1999
9/1999

10/1999

11/1999

11/1999
1/2000
4/2000
4/2000

10/2000

12/2000
4/2001
5/2001
8/2001
9/2001
2/2002
5/2002
7/2002
9/2002

11/2002
2/2003
7/2003
8/2003
2/2004
3/2004
4/2004
5/2004
6/2004
9/2004

11/2004
2/2005
5/2005
3/2006
5/2006
8/2006
1/2007
1/2007
2/2007

11/2007
3/2008
7/2008
5/2010
8/2010
2/2011
3/2011

10/2011
2/2012
5/2012
6/2012

10/2012

10/2012
4/2013
8/2013

11/2014
2/2015
3/2015
7/2002

12/2002
1/2003
2/2003
3/2003
4/2003

Bryant et al.
Kingberg et al.
Arunachalum
Loper

Attaluri et al.
Webber

Pandit
Madnick et al.
Morgenstern
Sadiq et al.
Arunachalam
Suver

owens
Endicott et al.
Brumme et al.
Yeager
Arunachalam
Lewish et al.
Ng et al.

Mattis et al.
Joy et al.

Ng et al.
McGowen et al.
Gajda et al.
Moshfeghi
Carey et al.
Asami et al.
Ignat

Berno
Hearne
Shatil et al.
Liu

Madan et al.
Jacobs et al.
Fu et al.
Clarke et al.
Gaither
Woodring ...
Shetty et al.
Dettinger et al.
Shalabi et al.
Demello et al.
Rasmussen
Dettinger et al.
Seitz et al.
Kasten et al.
Seitz et al.
Seitz et al.
Kasten et al.
Ghatare

Seitz
Dettinger et al.
Seitz et al.
Seitz et al.
Seitz et al.
Kasten et al.
Seitz et al.
Seitz et al.
Seitz et al.
Seitz et al.
Kasten et al.
Mullins

Hunt et al.
Thomas et al.
Bravery et al.
Radwin
Harrison et al.

GO6F 17/30607

717/122

2003/0167456 Al 9/2003 Sabharwal

2003/0187991 Al 10/2003 Lin et al.

2003/0235211 A1 12/2003 Thiru et al.

2004/0073539 Al* 4/2004 Dettinger GO6F 17/30398
2004/0073630 Al 4/2004 Copeland et al.

2004/0088493 Al 5/2004 Glasco

2004/0123278 Al 6/2004 Nanja et al.

2004/0153457 Al1* 82004 Fischeretal. 707/10
2004/0193620 Al 9/2004 Cheng et al.

2004/0210556 Al 10/2004 Brooke et al.

2004/0225696 Al* 11/2004 Wong et al. 707/203
2004/0254939 Al 12/2004 Dettinger et al.
2005/0120014 Al* 6/2005 Defllercocoviviiinn 707/4

2005/0149907 Al 7/2005 Seitz et al.
2005/0154722 Al 7/2005 Seitz et al.
2005/0154765 Al 7/2005 Seitz et al.
2005/0165758 Al 7/2005 Kasten et al.
2005/0182758 Al 8/2005 Seitz et al.
2006/0101385 Al 5/2006 Gerken et al.
2008/0059950 Al 3/2008 Seitz et al.
2008/0162820 Al 7/2008 Kasten et al.
2010/0095270 Al 4/2010 Seitz et al.
2010/0268749 Al 10/2010 Seitz et al.
2011/0087645 Al 4/2011 Seitz et al.
2011/0137914 Al 6/2011 Kasten et al.
2012/0221599 Al 82012 Seitz et al.
2013/0042065 Al 2/2013 Kasten et al.
2013/0282724 Al 10/2013 Seitz et al.
2013/0282758 Al 10/2013 Seitz et al.
2015/0169461 Al 6/2015 Kasten et al.

FOREIGN PATENT DOCUMENTS

WO WO0-2005010650 A2 2/2005
WO WO0-2005057364 A2 6/2005
WO WO0-2005057364 A3 6/2005
WO WO-2005057365 A2 6/2005
WO WO0-2005057365 A3 6/2005

OTHER PUBLICATIONS

U.S. Appl. No. 11/007,061, Notice of Allowance mailed Mar. 17,
2008, 9 pgs.

U.S. Appl. No. 11/007,061, Response filed Nov. 21, 2007 to
Non-Final Office Action mailed Aug. 23, 2007, 7 pgs.

U.S. Appl. No. 11/007,061, Supplemental Notice of Allowability
mailed May 2, 2008, 5 pgs.

U.S. Appl. No. 11/008,775, Advisory Action mailed Jan. 28, 2010,
3 pgs.

U.S. Appl. No. 11/008,776, Advisory Action mailed Mar. 5, 2008,
3 pgs.

U.S. Appl. No. 11/008,776, Final Office Action mailed Nov. 2, 2007,
11 pgs.

U.S. Appl. No. 11/008,776, Final Office Action mailed Nov. 13,
2009, 13 pgs.

U.S. Appl. No. 11/008,776, Final Office Action mailed Nov. 24,
2008, 15 pgs.

U.S. Appl. No. 11/008,776, Non Final Office Action mailed May 14,
2007, 13 pgs.

U.S. Appl. No. 11/008,776, Non Final Office Action mailed Jun. 29,
2011, 13 pgs.

U.S. Appl. No. 11/008,776, Non-Final Office Action mailed Apr. 8,
2009, 15 pgs.

U.S. Appl. No. 11/008,776, Non-Final Office Action mailed Jun. 2,
2008, 12 pgs.

U.S. Appl. No. 11/008,776, Notice of Allowance mailed Feb. 14,
2012, 13 pgs.

U.S. Appl. No. 11/008,776, Response filed Jan. 12, 2010 to Final
Office Action mailed Nov. 13, 2009, 11 pgs.

U.S. Appl. No. 11/008,776, Response filed Jan. 26, 2009 to Final
Office Action mailed Nov. 24, 2008, 12 pgs.

U.S. Appl. No. 11/008,776, Response filed Feb. 4, 2008 to Final
Office Action mailed Nov. 2, 2007, 14 pgs.

U.S. Appl. No. 11/008,776, Response filed Jul. 8, 2009 to Non Final
Office Action mailed Apr. 8, 2009, 12 pgs.

US 9,448,944 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 11/008,776, Response filed Aug. 14, 2007 to Non
Final Office Action mailed May 14, 2007, 16 pgs.

U.S. Appl. No. 11/008,776, Response filed Sep. 2, 2008 to Non-
Final Office Action mailed Jun. 2, 2008, 11 pgs.

U.S. Appl. No. 11/008,776, Response filed Dec. 29, 2011 to Non
Final Office Action Received Sep. 29, 2011, 12 pgs.

U.S. Appl. No. 11/009,388, Advisory Action mailed Apr. 6, 2006, 3
pgs.

U.S. Appl. No. 11/009,388, Advisory Action mailed May 14, 2007,
3 pgs.

U.S. Appl. No. 11/009,388, Examiner Interview Summary mailed
Jul. 6, 2007, 1 pg.

U.S. Appl. No. 11/009,388, Final Office Action mailed Jan. 13,
2006, 10 pgs.

U.S. Appl. No. 11/009,388, Final Office Action mailed Jan. 25,
3007, 10 pgs.

U.S. Appl. No. 11/009,388, Non Final Office Action mailed Jun. 24,
2005, 10 pgs.

U.S. Appl. No. 11/009,388, Non Final Office Action mailed Jul. 25,
2006, 16 pgs.

U.S. Appl. No. 11/009,388, Notice of Allowance mailed Jul. 16,
2007, 9 pgs.

U.S. Appl. No. 11/009,388, Notice of Allowance mailed Nov. 16,
2007, 4 pgs.

U.S. Appl. No. 11/009,388, Pre-Appeal Brief Request filed May 25,
2007, 5 pgs.

U.S. Appl. No. 11/009,388, Response filed Mar. 13, 2006 to Final
Office Action mailed Jan. 13, 2006, 12 pgs.

U.S. Appl. No. 11/009,388, Response filed Mar. 26, 2007 to Final
Office Action mailed Jan. 25, 2007, 14 pgs.

U.S. Appl. No. 11/009,388, Response filed Oct. 24, 2005 to Non
Final Office Action mailed Jun. 24, 2005, 11 pgs.

U.S. Appl. No. 11/009,388, Response filed Oct. 25, 2006 to Non
Final Office Action mailed Jul. 25, 2006, 15 pgs.

U.S. Appl. No. 11/009,411, Advisory Action mailed May 9, 2008,
3 pgs.

U.S. Appl. No. 11/009,411, Final Office Action mailed Feb. 21,
2008, 14 pgs.

U.S. Appl. No. 11/009,411, Non Final Office Action mailed Feb. 23,
2007, 9 pgs.

U.S. Appl. No. 11/009,411, Non Final Office Action mailed Aug. 24,
2007, 13 pgs.

U.S. Appl. No. 11/009,411, Non-Final Office Action mailed Sep. 5,
2008, 12 pgs.

U.S. Appl. No. 11/009,411, Non-Final Office Action mailed Dec. 24,
2008, 5 pgs.

U.S. Appl. No. 11/009,411, Notice of Allowance mailed Jan. 12,
2010, 11 pgs.

U.S. Appl. No. 11/009,411, Pre-Appeal Brief Request filed May 21,
2008, 5 pgs.

U.S. Appl. No. 11/009,411, Response filed Mar. 24, 2009 to Non
Final Office Action mailed Dec. 24, 2008, 8 pgs.

U.S. Appl. No. 11/009,411, Response filed Apr. 21, 2008 to Final
Office Action mailed Feb. 21, 2008, 14 pgs.

U.S. Appl. No. 11/009,411, Response filed May 23, 2007 to Non
Final Office Action mailed Feb. 23, 2007, 9 pgs.

U.S. Appl. No. 11/009,411, Response filed Nov. 26, 2007 to
Non-Final Office Action mailed Aug. 24, 2007, 13 pgs.

U.S. Appl. No. 11/009,411, Response filed Dec. 5, 2008 to Non-
Final Office Action mailed Sep. 5, 2008, 13 pgs.

U.S. Appl. No. 11/009,412, Advisory Action mailed Apr. 6, 2006, 3
pgs.

U.S. Appl. No. 11/009,412, Advisory Action mailed Apr. 17, 2007,
3 pgs.

U.S. Appl. No. 11/009,412, Final Office Action mailed Jan. 13,
2006, 10 pgs.

U.S. Appl. No. 11/009,412, Final Office Action mailed Jan. 25,
2007, 17 pgs.

U.S. Appl. No. 11/009,412, Final Office Action mailed Nov. 26,
2008, 10 pgs.

U.S. Appl. No. 11/009,412, Final Office Action mailed Dec. 3, 2007,
9 pgs.

U.S. Appl. No. 11/009,412, Non-Final Office Action mailed May 14,
2008, 9 pgs.

U.S. Appl. No. 11/009,412, Non-Final Office Action mailed Jun. 20,
2007, 11 pgs.

U.S. Appl. No. 11/009,412, Non-Final Office Action mailed Jun. 24,
2005, 10 pgs.

U.S. Appl. No. 11/009,412, Non-Final Office Action mailed Jul. 27,
2006, 15 pgs.

U.S. Appl. No. 11/009,412, Notice of Allowance mailed May 4,
2010, 12 pgs.

U.S. Appl. No. 11/009,412, Notice of Allowance mailed Sep. 21,
2009, 12 pgs.

U.S. Appl. No. 11/009,412, Response filed Feb. 4, 2008 to Final
Office Action mailed Dec. 3, 2007, 14 pgs.

U.S. Appl. No. 11/009,412, Response filed Feb. 26, 2009 to Final
Office Action mailed Nov. 26, 2008, 30 pgs.

U.S. Appl. No. 11/009,412, Response filed Mar. 13, 2006 to Final
Office Action mailed Jan. 13, 2006, 11 pgs.

U.S. Appl. No. 11/009,412, Response filed Mar. 26, 2007 to Final
Office Action mailed Jan. 25, 2007, 17 pgs.

U.S. Appl. No. 11/009,412, Response filed Apr. 24, 2007 to Advi-
sory Action mailed Apr. 17, 2007, 17 pgs.

U.S. Appl. No. 11/009,412, Response filed Aug. 14, 2008 to Non
Final Office Action mailed May 14, 2008, 13 pgs.

U.S. Appl. No. 11/009,412, Response filed Sep. 20, 2007 to Non-
Final Office Action mailed Jun. 20, 2007, 13 pgs.

U.S. Appl. No. 11/009,412, Response filed Oct. 24, 2005 to Non-
Final Office Action mailed Jun. 24, 2005, 12 pgs.

U.S. Appl. No. 11/009,412, Response filed Oct. 27, 2006 to Non-
Final Office Action mailed Jul. 27, 2006, 15 pgs.

U.S. Appl. No. 11/088,776, Final Office Action Mailed Nov. 13,
2009, 15 pgs.

U.S. Appl. No. 11/957,886, Response Filed Feb. 8, 2012 to Final
Office Action Received Dec. 8, 2011, 18 pgs.

U.S. Appl. No. 11/957,886 Response Filed Oct. 24, 2011 to Non-
Final Office Action Received Jul. 22, 2011, 15 pgs.

U.S. Appl. No. 11/965,458 Notice of Allowance mailed Oct. 6,
2010, 6 pgs.

U.S. Appl. No. 11/965,458, Non-Final Office Action mailed Mar.
23, 2010, 11 pgs.

U.S. Appl. No. 11/965,458, Notice of Allowance mailed Jul. 22,
2010, 6 pgs.

U.S. Appl. No. 11/965,458, Notice of Allowance mailed Oct. 6,
2010, 6 pgs.

U.S. Appl. No. 11/965,458, Response filed Jun. 23, 2010 to Non
Final Office Action mailed Mar. 23, 2010, 8 pgs.

U.S. Appl. No. 11/975,886, Final Office Action mailed Dec. 8, 2011,
14 pgs.

U.S. Appl. No. 11/975,886, Non Final Office Action mailed Jul. 22,
2011, 15 pgs.

U.S. Appl. No. 12/783,452, Non-Final Office Action mailed Aug.
17, 2010, 13 pgs.

U.S. Appl. No. 12/783,452, Notice of Allowance mailed Feb. 17,
2011, 12 pgs.

U.S. Appl. No. 12/783,452, Notice of Allowance mailed Jun. 1,
2011, 12 pgs.

U.S. Appl. No. 12/783,452, Response filed Nov. 17, 2010 to Non
Final Office Action mailed Aug. 17, 2010, 13 pgs.

U.S. Appl. No. 12/901,275, Response filed Jul. 1, 2011 to Non Final
Office Action mailed Apr. 1, 2011, 17 pgs.

U.S. Appl. No. 12/901,275, Final Office Action mailed Sep. 15,
2011, 13 pgs.

U.S. Appl. No. 12/901,275, Non Final Office Action mailed Apr. 1,
2011, 12 pgs.

U.S. Appl. No. 12/901,275, Notice of Allowance mailed Dec. 22,
2011, 11 pgs.

U.S. Appl. No. 13/026,909, Non Final Office Action Mailed Feb. 13,
2012, 14 pgs.

US 9,448,944 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

“International Application Serial No. PCT/US04/41071, Interna-
tional Search Report and Written Opinion mailed Mar. 23, 20067, 8
pgs.

Aquino, Mario, “A Simple Data Access Layer using Hibernate”,
Object Computing, Inc., http://www.ociweb.com/jnb/jnbNov2003.
html, (Nov. 19, 2003).

Bourret, R., et al., “A generic load/extract utility for data transfer
between XML documents and relational databases”, Second Inter-
national Workshop on Advanced Issues of E-Commerce and Web-
Based Information Systems, 2000. WECWIS 2000, IEEE, (2000),
134-143.

Calmet, Jacques, et al., “A generic Query-translation framework for
a mediator architecture”, IEEE, (Apr. 1997), 434-443.

Cheng, et al., “XML and DB2”, IEEE.

Cheng, J., et al., “XML and DB2”, 16th International Conference on
Data Engineering (ICDE’00), IBM Santa Teresa Laboratory, (2000),
5 pgs.

Cohn, M., et al.,, “Java Developer’s Reference”, Sams.net Publish-
ing, (1996), 1, 2, 80, 81.

Santucci, G., et al,, “A hypertabular visualizer of query results”,
1997 IEEE Symposium on Visual Languages, 1997. Proceedings.,
(1997), 189-196.

Wooguil, P, et al., “Flexible and fast IP lookup algorithm”, IEEE
International Conference on Communications, 2001. ICC 2001.,
(2001), 2053-2057.

U.S. Appl. No. 11/975,886, Response filed Nov. 27, 2012 to Final
Office Action mailed Aug. 29, 2012, 8 pgs.

U.S. Appl. No. 11/975,886, Final Office Action mailed Aug. 29,
2012, 12 pgs.

U.S. Appl. No. 11/975,886, Non Final Office Action mailed Mar. 29,
2012, 16 pgs.

U.S. Appl. No. 11/975,886, Notice of Allowance mailed Dec. 20,
2012, 7 pgs.

U.S. Appl. No. 11/975,886, Response filed May 29, 2012 to
Non-Final Office Action mailed Mar. 29, 2012, 19 pgs.

U.S. Appl. No. 12/638,913, Amendment filed Aug. 21, 2012, 6 pgs.
U.S. Appl. No. 12/638,913, Examiner Interview Summary mailed
Aug. 29, 2012, 2 pgs.

U.S. Appl. No. 12/638,913, Notice of Allowance mailed May 21,
2012, 15 pgs.

U.S. Appl. No. 12/638,913, Response to Rule 312 Communication
mailed Sep. 10, 2012, 2 pgs.

U.S. Appl. No. 12/638,913, Supplemental Amendment filed Aug.
23, 2012, 7 pgs.

U.S. Appl. No. 12/901,275, 312 Amendment filed Feb. 23, 2012, 57
pgs.

U.S. Appl. No. 12/901,275, Preliminary Amendment filed Oct. 8,
2010, 10 pgs.

U.S. Appl. No. 12/901,275, Response filed Dec. 8, 2011 to Final
Office Action mailed Sep. 15, 2011, 9 pgs.

U.S. Appl. No. 12/901,275, Response to Rule 312 Communication
mailed Apr. 4, 2012, 2 pgs.

U.S. Appl. No. 13/026,909, Notice of Allowance mailed Jun. 26,
2012, 7 pgs.

U.S. Appl. No. 13/026,909, Response filed May 14, 2012 to Non
Final Office Action mailed Feb. 13, 2012, 10 pgs.

U.S. Appl. No. 13/463,429, Non Final Office Action mailed Oct. 26,
2012, 11 pgs.

U.S. Appl. No. 13/463,429, Response filed Jan. 28, 2013 to Non
FInal Office Action mailed Oct. 26, 2012, , 13 pgs.

U.S. Appl. No. 13/619,270, Preliminary Amendment filed Oct. 31,
2012, 5 pgs.

“International Application Serial No. PCT/US2004/041071, Inter-
national Preliminary Report on Patentability mailed Jun. 22, 20067,
5 pgs.

“International Application Serial No. PCT/US2004/041071, Written
Opinion mailed Mar. 23, 2006”, 4 pgs.

“International Application Serial No. PCT/US2004/041074, Inter-
national Preliminary Report on Patentability mailed Jun. 22, 20067,
9 pgs.

“International Application Serial No. PCT/US2004/041074, Inter-
national Search Report mailed Jul. 15, 2005”, 5 pgs.
“International Application Serial No. PCT/US2004/041074, Written
Opinion mailed Jul. 15, 20057, 7 pgs.

U.S. Appl. No. 13/463,429, Notice of Allowance mailed Apr. 15,
2013, 12 pgs.

U.S. Appl. No. 13/463,429, 312 Amendment filed May 14, 2013, 9
pgs.

U.S. Appl. No. 13/463,429, PTO Response to Rule 312 Commu-
nication mailed Jun. 6, 2013, 2 pgs.

U.S. Appl. No. 13/924,029, Preliminary Amendment filed Jul. 16,
2013, 8 pgs.

U.S. Appl. No. 13/924,066, Preliminary Amendment filed Jul. 16,
2013, 6 pgs.

U.S. Appl. No. 13/924,029 , Response filed Jan. 3, 2014 to Non
Final Office Action mailed Sep. 3, 2013, 14 pgs.

U.S. Appl. No. 13/924,029, Non Final Office Action mailed Sep. 3,
2013, 13 pgs.

U.S. Appl. No. 13/924,029, Notice of Allowance mailed Apr. 7,
2014, 15 pgs.

U.S. Appl. No. 13/924,066, Non Final Office Action mailed Sep. 11,
2013, 9 pgs.

U.S. Appl. No. 13/924,066, Notice of Allowance mailed Apr. 11,
2014, 12 pgs.

“U.S. Appl. No. 13/924,066, Response filed Jan. 13, 2014 to
Non-Final Office Action mailed Sep. 11, 2013”, 8 pgs.

Enrico, Franconi, et al., “A DataWarehouse Conceptual Data Model
for Multidimensional Aggregation”, Google, (1999), 14 pgs.
Keller, Arthur M, et al., “Persistence Software: Bridging Object-
Oriented Programming and Relational Databases”, (1993), 523-528.
U.S. Appl. No. 13/619,270, Non Final Office Action mailed May 2,
2014, 11 pgs.

U.S. Appl. No. 13/619,270, Response filed Oct. 2, 2014 to Non
Final Office Action mailed May 2, 2014, 8 pgs.

U.S. Appl. No. 13/924,029, Amendment Under 37 C.F.R. filed Jul.
3, 2014, 8 pgs.

U.S. Appl. No. 13/924,029, Notice of Allowance mailed Jul. 18,
2014, 10 pgs.

U.S. Appl. No. 13/924,066, Notice of Allowance mailed Oct. 2,
2014, 9 pgs.

U.S. Appl. No. 13/619,270, Notice of Allowance mailed Nov.
28,2014, 7 pgs.

U.S. Appl. No. 14/633,782, Preliminary Amendment filed Mar. 19,
2015, 6 pgs.

U.S. Appl. No. 14/633,782, Non Final Office Action mailed Feb. 17,
2016, 13 pgs.

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 44 US 9,448,944 B2

~18
rd

APPLICATION DOMAIN

i BUSINESS QBIECTE 13

0

BUSINESS :
LAYER ;

18 . i
- St

A
DATAOQBIECTS

DATA ACCESS
LAYER

3
}
3
{
I3
I
3
¥
3
4
H
14 :
" :
i
H
¥
¢
¢
¢
¥
H

MAPFING
SERVICES

e am A s NA N A A A AG AALRA AR AR AP N b AP R R NN S R AR AA S N A AR N B B0 e e 4

ROUTING
SERVICES g
2

TRANSLATION
SERVICES ;

& ») yau ke %

oATA* |

¥
PERSISTANT LAYER

M e e e A AR AR AR AR R SR e v WA RN WA VRS VL YA SR e MR TR T AR SR SA MR W e e AR SR RR o AR AT v A v e ¥t Y Ma YR WA VA AR AR AR A e s e s

U.S. Patent

Sep. 20, 2016

Sheet 2 of 44

US 9,448,944 B2

P
&

0 3% 0
sl o o
SYEM %G? SalE 38 TEM FOR SALE ¥ O FOR SALE

Wi~ DESC,
fg?u G ”}3-3
34 b FRICE

F‘*\‘LL

%% v _s
e d

$1.

R
\‘JL} P()h}
g PRICE

ATIRIBUTES . 3

HAT
BLE
$2.00

ATTRIBUTES b ¥

METHC

QUS()

METHODS()

¢

ey

3'&.} "N‘fs
k’\

DATA A
LAY

COESS

LN

gﬂ ™~ i‘}

HAT BLu

b
:

U.S. Patent

Sep. 20, 2016

Sheet 3 of 44

‘.-"""' e‘hﬁ ;\:} F\ E‘E {:;’\? % '33 :\i

& DOMAN 18

US 9,448,944 B2

e Tate T oY
2O 2o
13

CACHED 00

LDR

b Y
& £G

]

EEN

~ 5

DATABASE SLRVER

ERVEVRR AT
s e,

8
§ N s cennan et
i

H
H
H
N

e,

24

e

FIG.

J

US 9,448,944 B2

Sheet 4 of 44

Sep. 20, 2016

U.S. Patent

e

e, ,.N;.‘

4
.\.%‘!.....s.s.:.s.;w«m

.r.\v.tr.g-bhi-\\(‘n\\\\

$H o~
[

..

b

b3 i
3

gl

TN R N ™.

TN 110 A

H#

et

<

vy 9l

oy amans A Saant seens Aeaany

TR A

% B MADG

~ WOV Y

US 9,448,944 B2

Sheet 5 of 44

Sep. 20, 2016

U.S. Patent

& 9l

wi
s

VNGOG

&

_J I

Lo

¢

! iy " \wu
j xﬁ A
L HWD :
L WO W
o e / ARt
{ v T \Ay
! i ML
3 - = i W, 21 fﬁw
; gl (] P \ | e W T
THE G A Wi m
o e g8 Hid e
By g El - O e
“ ﬂ : e
A “ !
j %L
i m ;
}

vie casss acss reves sises isces cssen. sson sinn asen smind Snn amrer asren mmon mvar nsan aemn amms aan aen ‘L

US 9,448,944 B2

Sheet 6 of 44

Sep. 20, 2016

U.S. Patent

tansn. cewea wsee ceevr cyems iweep ceew weee eees coees cerce e oeeny
U
3
H
H
H
H

O wﬂr memb

i
40 W
0L O

oy

2

mﬁwg

e e

e — -
k o
b k

et

&

- kmﬁ

Srvw sveve ceeww ey Serev oepee pawss mmans sema paee sesme mrrs. eremi wres. mees srre eerrs mere emme smeme smetn geaas Gasas ssses amens cosis comes emims cames cmass o

Powd
o
\

U.S. Patent Sep. 20, 2016 Sheet 7 of 44 US 9,448,944 B2

HANUAL ANDIOR ¢
ALTTOMATIO 10
EDATING PROCESS X*"' b

-

DATABASE

DATABASE | | CONFIGURATION

SCHEMA RLE
UTRTY ™ DML METADATA) |

CLARS DEFRITON |
FRE
{£.6. X8L
TEMPLATE) ~109
104 g

¥ ¥

SOFTWARE BEVELOPMENTY
MACHINE $44

ey

13

CODE GENERATOR

READ CLASS
MODULE GERERATOR
MODULE
iy .6, MCROSOFY
MO
118

a“‘
/ {

g0 1 BompL

pra | |
-/ E OOl] DDIMPL] AP
e NUEEE I R R
N

\\ T\‘
S SUR CLASSES
& : 108

CODEGEN 1| CONEGEN 1] COnEsen 1 000esEN N oo
POBO \ggfm

B3R DO HETAR !

— T T

goadl DAC M BoFlisorll soe
40} OYEST 4 144 JimPL] TESY
2 L R

! .
3?5 7. ?w AN
5;3 SKELETON OLASS

H2

US 9,448,944 B2

Sheet 8 of 44

Sep. 20, 2016

U.S. Patent

Lk ah aa kesmr ke Re Ar pr A A AR N er e 6 Ry R R RS AR R RN N R R R P 0 e S SR e e e e e e G G e e s e vm

WX 004

RW00-4

o%

98 L OV(00

o5t
oo dARp

(o

B N SN

Rl |

i s o e e o 1o vy

wwwx Y. &ﬁmwmmﬁw

1%

g

A R

8>
e

£981 JOG004

g ‘hup

D004 M AUy

(U 08004

¥

ORI MAAERUY

208904

U.S. Patent

Tig. 9

Sep. 20, 2016

Sheet 9 of 44

US 9,448,944 B2

, i i
CONFIGURATION FRLE o102
4 @f..wggsg
06 SKELETON ISFORMATION
DODF GENERATION ATTRIBUTES a Y
BAPORT sanli
DG IMPORT RO IMPORY
STATEMENTS STATEMENTS
2 f"“‘?":
g FIELD MASPINGS 08
"1 QUERY SET TABLE
DEFINITIONS | DEFINITIONS | DEFINITIONS
TABLE FELD
JORS MARFINGS
282 24
READ UPDATE
SETS SEYS
28 238
COR QUERY
HINTR NFORMATION
S ———————————— 208
DAC SKELETON INFORMATION s

CLASS DEFINITION FILE

DO TEMPLATE

280

QUDEGEN DULTEMPLATE

282

DO BPL. TEMPLATE

{284

CODEGEN D0 IMPL. TEMPLATE

285

MAP TEMPLATE

288

CODEGEN MAP TEMPLATE

BO TEMPLATE

CODEGEN 8O TEMPLATE

BO RMPL TEMPLATE

COREGEN BO IMPL. TEMPLATE

DAG TEMPLATE

D80 TESTS TEMPLATE

BOF TEMMLATE

BOF IPL TEMRLATE

BOF TESTS

U.S. Patent Sep. 20, 2016 Sheet 10 of 44 US 9,448,944 B2

o s Fig. 104

A e -~
<guerydefe> oo o
<gusrynams names FIND BY PK” pnmary="rug >
<guerynams name="TNSERT_PK">

wiuerydelse
| ~ 218
<setdefs> Fin 106
. ig. 10
<rgadsalidss ﬁ/wﬁ‘iii é}

<selid name=" MINIVUM

<freadselidss

M7
¥
<setil namex"MINIMUM"

<updatesefids>

<fupdateselids>

<fseldafs>

~218 xo
- e gt .
s 280 22 2 *
<{abladefs» & # I ng’/}? ¢ ‘g {‘}{j
<iabledef name="User" afias="u'>
<tabinde! namex"Userinfo” altag="u"»
<fiabladafs>

244
e 222 £ ™Y
¥ ~342 242 e >
<tablejoins> ¥ # o0 Fig. 10D
<tablgjoin sgi="w D=0l 40 ogn :
<tableref name= "User'/>
~ <{ablersf name="Userlnfo™
o iabisjoine
<frablgioing®

U.S. Patent Sep. 20, 2016 Sheet 11 of 44 US 9,448,944 B2

e 248 242 240 A/.,.«gg_ %ﬁfg‘» 10E

<fialdmappings> .

#
<fu §§ name="i{" labla="Use:" iﬁeid =10 atirype="int” gelter="trua"
zalter="lrus" bogatler="rue" bosalters"rue™>

S48 249 F1 4. 10F

o, Shint fs&me“ lgﬁﬁ a‘itﬂypem inl” gelter="true” selter="tryg”
hegetier="alse” bosstler="talsa™

L RED v 251 @Eg 106G

&
L Shashhind names? staﬁ’&m% afiriype="Date” geller="false’
setlar="falza" mgmw atse" hoseliars"falss™S

L

252) e .
(e Fig 109

<contained names"tontactinfo”
corainedma gmw “ContacinioMan, i}a&ﬁmﬁns&} .
coniainguclassinst="Contacliniolioimpl.class” atlrtype= &:sm;act nfe”
getier="trug" seltes="trua"™>

“f»gﬁé P -] F i q f i:}.g

P
. w;i:s@b; pames “bséing@mmay a“iriypﬁ-““{'}urmcy getters"rue"
sefter="lrug"> . . .
afkey names"billingCurrenoylly” subalir="currencyld™>
. <fsubonp & 4
<ffieldmappings™ ! ;

}
£
225 227/

U.S. Patent Sep. 20, 2016 Sheet 12 of 44 US 9,448,944 B2

28
e
dedrhints>» f.w O {F'{;? f {}?
<global” oE -
<member namesid'fs 28
<fglobals — 28}

<global names"m 5;3@{‘;@‘%%;:}%%9&“‘3

<member nafe="id>
<member name="lypa >
<fglobal>

rd 282 ago . .
<rpadsals> .f* * E § }:{
<rogdast wamam"?iéLL“fu ="l 1 fé? . 107
<rpadsel name="MINI &%iﬁ _
<member namas' ;m@s {3“
<mamber *‘zir}m Toginhame>
<freadsel»
. gﬁ
regdsster

IS0 " et
28 e D A .s N
<u;\§;€a§‘t&s§(§5> &£ 7 258 F 55;? 10L
<ypdatesel names “Fi}&i iiset="ua"f>
<updateset nares " MEDIIM™ e
<member name="uyserld">
<pamber namesloginNama™>
<fupdistesals N

<fupdatasets> |

234 {E’?é‘g 10M

PRk
<HUBIeS> 28R
<salentquary name="FIND_ &:‘{ PR &
<selecisiatoment sol="READSET FULL ™
%& FSELECT
ECTHIELDSL 384
FROM <TABLESR"+ ‘
?"“?—% ERE wiD = m_userld and (KIONGY
}' -t

<sslecisialement>
<fgeleniquary™

Sheet 13 of 44 US 9,448,944 B2

U.S. Patent Sep. 20, 2016

READ A TEMPLATE FROM
A CLASS DEFINITION FiLE

i

READ META-DATAFROM A
CONFIGURATION FILE
BASED ON THE TEMPLATE

i -

" Ly
G
o

AUTOMATIGALLY
GENERATE
A CLASE

o
ey
o

" VORE
TEMPLATES o

.\\ N

YES

-
-
"~
..
e
.

U.S. Patent

Sep. 20, 2016

Sheet 14 of 44

EW OR MUDIFIED DATA

FILE

e

CONFIGURATION |
| (XML METADATA) |

CLASS DEFINITON

-3

TEMPLATE}
104

-

i

N—

US 9,448,944 B2

340

SOFTWARE DEVELOPMENRT

MACHINE
R
CODE REGENERATORS4Z
READ CLASS
MODULE | GENERATOR
‘ MODULE
3| {EC, MOROSOFT
RSXMLS
118

/

. N . ¥ ¥ R
CODEGEN §) CODEGEN [t CODEGEN £ 1 CODEGEN § | CODEGEN
LS RS MAR 8G BORIPL
13 122 4 128 128

AN

BASE CLASSES

i

{E£.G., REGENERATEABLE)

F fsg 12

US 9,448,944 B2

¢1 bup

A BUROIBE e O(UEE

LB,

Sheet 15 of 44

dwiocuenepnnieg R UBEPOIEY w

Sep. 20, 2016

U.S. Patent

'
: AR .
: gng LT 4 3 % mw.wmm 3 QQ
e FIANYXT BONVAREHNG oot] SO0 Vs Db
y w A3
, <GB
4 OGS peeeeeeeeeeem D004 ,
: vAed | GOPLBSBH0000 OYao
k4 1 A Weeg mm 4 ol Qyeed
<HIBLUE] >
HOCUSDRDNO00 - m LUSEBHON00
i
TR

US 9,448,944 B2

Sheet 16 of 44

Sep. 20, 2016

U.S. Patent

?ki‘ii:::::::ig:Ei,:,iz?i:.
M RIS
Mw? 1 OUCGEE e 12y
22 S S sy S
§ M 9L
M 4
m
W LRI
¢
) A1 dworusoEponey [HEOBROOIRY
vy S
QNW\ W : wwwk
e - HONY L RIEHNE - e
k4 %
BB B
I ey R » 004
4
a8 a‘i,i.wssis g1
_ SRR
o NOOUenBpOOnts b HADRDOON0
143 Va
AN

et~

[OE00

!

ed

408004

142

FI B

3

kS
(5
3

1501 20800

£

U.S. Patent

Sep. 20, 2016 Sheet 17 of 44

READ A TEMPLATE FROM
A CLASS DEFINITION FILE

¥ R

READ META-DATAFROM A
CONFIGURATION FILE
BASED ON THE TEMPLATE

s R
¥ o
AUTOMATICALLY
REGENERATE

A BASE CLASS

VES 7 MORE

< CLASSEs >

US 9,448,944 B2

US 9,448,944 B2

Sheet 18 of 44

Sep. 20, 2016

U.S. Patent

91 ‘Bl

e T

ot o e e o [e e e o ot s e S S 6 e e ek ot A i s ot ML st A A 0 PR

TIAON
- I
Looear

&% A1 7S
FI00M .
INETD | FIR0OW | 3naon

DHON JONIBSEO0Nd | ONIAEO3Y

N

INION3 et S
AHIN ao
way o
- P
74 . L
- N8 NIVAOQ
s NOLLYOITdaY
- W3 .
% L
¥ag B
g T T T T

US 9,448,944 B2

Sheet 19 of 44

Sep. 20, 2016

U.S. Patent

£1
‘&

MNE

G

Y crrrr M)
: ey

gt
YEn
Ea 3

Lo s 3
N R LN
PRI LR

M
3,

”‘S}(e o 2R ,“.\H(«
L died HE
I T A B P R

FIG. 17

465

i

VALUE
RO

&
H

TNE

GEY

i

385

US 9,448,944 B2

Sheet 20 of 44

Sep. 20, 2016

U.S. Patent

BeI P

HATIOH 30V 1d HITIOH 30 Id
CEZIVIOEES REFAR e e
{90100 30V Id w.\\\
TINYNAC |
DUYLE e SIRIENG TS
4 SEREAD 31570
G9¢: mmmxﬁ AT % ond >
7 “ o] SO LHISN
i SAINT T1V0N
Tom i mmww 1571 as M
o i } iaty » } ; “
| wmm.\\mwﬁ&ﬁm,w ERLE I ngmx >
- v / a3

e/ SLNIH ¥0U J03A0
SNYN A¥END

5135] 538
oez/1 3i¥0dN | vad

£EE STHNLOMLE AdZND

sie- A SNOPOL3

1 DNidaYR T3

8 oy

U.S. Patent Sep. 20, 2016 Sheet 21 of 44 US 9,448,944 B2

FIELDTYPES

e ST
FIRLD MAPPING FIELD dTIZNGIMGE B
24 MARRING
o 248

HINT »

. o FIELD 2481288

ARTRIBUTES MAPPING
248

HASH
HINT 281288
I HELR

MAPPING

25

SONTAIRED

|

oY)
A

-

TABLE TOINS ORJECT (asdigseizniiondl ans

ze2 SIELD
MAPPING
Gda. BGE 382
244~ ow | 2aa) 20
SRIPPET SURORIEQT
FIELD 2641388 12281380 228
MAPRING :
o84

READ SETS DEFAULT DDR
228 RINTS
282
i & ki
4 34
UPDATE SETS OVERIDE DOR
23 MINTS
o N
F58- 283
N A
h 4 A
34 24

Fig. 188

US 9,448,944 B2

Sheet 22 of 44

Sep. 20, 2016

U.S. Patent

61 Uil

ey SppI We = DrIeST IMIHA JESNTLT WONA P LOT1aS reidwexy
SUBNIMUSEYs U0
yser

%57
oS e g
py i=pliosn TUBHM 85717 NOMA B LOTTES eldwexg
SUBNIE W A0
I
naumy

.,

- YBE

Y

2

s |
Jes"LNONS PILIOF TS eiduiex

BuBNBIEEMBOT 1T O

sie] Eobion
%

_ 268
.

SIOPIOM 908]d PeZIRIGUBD

o
P

US 9,448,944 B2

Sheet 23 of 44

Sep. 20, 2016

U.S. Patent

0 bip

{pyanosry = PSS DU DUTUE & DUIBSTY SR, 9ncusy e WOM- dnodd oWy 'l 108G Nesy

e

NI puB P = DUIBST) THEHM %a\@ S0 WOM S dnoid swen p L0FTES sidumy
&

0z gz SN0 U0
?wmw
" IWEMA 00 B8N WOMS dnodl ‘eliey Dl [0FTES iy o
STV WOYL dnoal rewey o 109738 sdueng
SETIGYL> N
SOIG8 L,
B0 WO SWRY P IOTTIS nsey L
851 WOMd <SOTRILLI09TES> 10888 edwer
<STEHELOTTES Wiy
$pIBl 105165
AN
P {3y
e

BI8DI0H 808l DBZIEDEIS

US 9,448,944 B2

Sheet 24 of 44

Sep. 20, 2016

U.S. Patent

17 Py

_ s m:mwmmgmmnmﬁwmzﬁ.Qx%mmamwz&w
HO (BB = SWBUTUL ONY Bl= P SH3HM 1980 WO 8B 'l 109738 Hnsey

<L TR0 BB = WRUTUE ONY Pl DR <LISM0 Bidumys

<} AT SPBY UDRNISONs WM DS < L3840 AW
5,001 sddioond edpimy - m@ﬁ
{sop sdlionodd 24 50 OB U BINCUNE RUIES BUL UIM DIBY SIUR) 2u) amdwion) -0k
{" oty anaupE U BUIBY BINGLUUETILY N = BUIS T N Y
<NPBUEBNIE W N = DUBST) SHEMHM epdwexy
cff e BINRE W ey enquIE UL G
5,001 edhoyoud sidm -
A ¥,
9nF g

{panuguos)
SIEDI0M 808l DeTIRIDBIS

US 9,448,944 B2

Sheet 25 of 44

Sep. 20, 2016

U.S. Patent

2z bt

pus s Sy LN O D A0 BUllingss </NsSOHI4 I8N 880 L O LN IHESH
SUBNILLERY T N0 BUBRIRE W IR0

sy

sigu P pegl 01N LYBN]
<NESTTHSLYIEN> 880 L OUNL LYEsN]

ST AL HASNE

BB P 158 ¥4 FLY0dN

{panunuos)
SI8DI0M 808l paziEnsds

oS = () SHIHM YNSRI LIS B8 L LN

<MS0EHA Y

seduee
RN

UBUIBIEIS URBLIBIGR)IED

, d/:t%
EEs
ahuers
0
SPsld YeEl]
*,
158
@ty
4 wu& .
spiBl B1Rpdn
s/swx,

U.S. Patent

Sep. 20, 2016 Sheet 26 of 44

" START
] 414

¥ s

RECTIVING MODULE
RECEIVES REQUEST
TOREADDATA

™, A
“rvasse
pwacd

¥

PROCESSING MODULE

ASSOCIATED A QUERY

STATEMENT WITH THE
REQUESY

é 418

 RECEIVES CONTENT FROM

PROCESSING MODULE

RESPECTIVE SOURCES
AND GENERATESR
QUERY STATEMENT

A
o]
o5

e
A
£y

-

PROCESSING MODULE
QUERIES THE DATABARE
SERVER AND RECENVES
RESULTS

US 9,448,944 B2

US 9,448,944 B2

Sheet 27 of 44

Sep. 20, 2016

U.S. Patent

3

oz bLy

LR
I NOMED

<
g3y |

ININZIVIS ,&u,ﬁ
ST ONY AIE03Y
<

54

"y

(onE
H
mi %;,M
x,\ o
Ly
v
 INEHELYLS r\v
AHATD BLPOINOVIAOT b .
(MY VWA SAE0EY M NOLLIEO WA0NIE
¥ e CLANWAGNE
£4b ~ 3
INENALYIS 4
AHIND HOL LOFPEG 0L | f LOATED E.
ERAECEEENR SIS IO JNE0EY
\.\ F \4\‘.
157 8Ly
Byddud 0L LNEHELYLS
LSENDEN BERN0ML [T HAND wa&
£y ey

817 2O MaAYES 2800

¥4 HIAMTE J8YE VIV

#
996

G0 NC0W ENEN0 S807

248 AMNCOW ONISE=E00d
{18 JNIDNG AYEN0

U.S. Patent

Fig. 24

Sep. 20, 2016 Sheet 28 of 44

o

——

¥ 430
¥ £

GET QUERY TOKEN

1

NG

US 9,448,944 B2

418

< mg

g YES 24

&

RECEIVE CONTENT ASSOCIATED
WITH THE PLACE HOLDER ARD
WRITE CONTENT IN QUERY
STATEMENT

423
k: F e‘f’

WRITE 8TATIC
GLERY TOREN
00 IN QUERY
STATEMENT

had

¥

o T " ("“‘ ‘iﬁﬁ‘
7 MORE ™

Yes -

-
e

Lt

1 NO

INVOKE DRR MODULE YO
GET PHYSICAL TABLE VALUE
AND PHYSICAL DATA SOURCE

458
e"’..

484
¥ -
WRITE PHYSICAL TABLE
VALUE YO QUERY
STATEMENT

US 9,448,944 B2

¥

4

Sheet 29 of 44

FIG. 25A

‘.i:\
L

-

PLal

{
N

Sep. 20, 2016

i

N
S

QUERY Tt

=

U.S. Patent

.
by

Yoon
L

171

T

ERY

g8
i3
383

M odems o, demsdese b

ot

&

RO

3

S
o]

FIG. 258

U.S. Patent Sep. 20, 2016 Sheet 30 of 44 US 9,448,944 B2

— , P
Q&QT &

e 430 ,
Y el START
<SELECT» 42
1 . GET READ SET
E 3 &

REQUEST oot
SELECT | “
FIELDS ’

4 ud GET FIELD NAMES
E B o
RECEIVE AND WRITE -
CONTENT N QUERY . i
STATEMENT S,
- -1 LOCAL
- TABLE NAMES
f"”
(Tois 7 COMMUNICATE FIELD
T, 264 NAMES AND LOGICAL
TARLE NAMES
START
Ty 438 N
¥ N END
<TABLES»
T r'e
o
¥ ; -

REQUEST START
TABLES | o
VALUE , P

! i > GET READ SET
RECEIVE ANDWRIE ‘ a4
CONTENT IN QUERY B L - ¥ :
STATEMENT ?5“@%%%%&%

Fig. 268

U.S. Patent

Sep. 20, 2016

e

Sheet 31 of 44

US 9,448,944 B2

o 442
o &
(\m?\
T

EXECUTE GETTER METHOD

ON THE PROTOTYPE DATA

e 4«?&”
¥
ATTRIBUTES
448
X ¥ f‘f
REQUEST ATTRIBUTE VALUE
442
RECEVE ANDWRITE ’
CONTENT IN QUERY B
STATHMENT
END
L

Fig. 260

4R
& ;"é!
<IN
449
3 Il

REQUEST JOIN CONTENT

QBIECT FOR THE
ATTRIBUTE
¥ &

COMMUNICATE ATTRIBUTE

455
3 e

RECEIVE AND WRITE

CONTENT N QUERY N
STATEMENT

©

_

Tig. 260D

st . /{_,w.{%%ff;
&
T 450
L3 (.x ‘
#- GET READ &ET §
EEAK
i
MATCHLOGICAL | | ERTRY
TABLE NAMER
WITH TABLE
NAMES
IN JOI I MAP

COMMUNICATE RESULTS

P
ERND

kY

US 9,448,944 B2

Sheet 32 of 44

Sep. 20, 2016

U.S. Patent

iy

G e An war 4mt oa A ARk ha Aa ams car ma ma b

)
vz
SEALAS
3EYEYIVO

v7
MIANIE
YEYAYIYD |

/&m e

vz
ARG
36 LY

B N T

FHCOW
AREND

FINGON

NOLLY NG

ki

HRIDND
ANIND

£

t
A
=03

905
OV
AL

1

¥
H
H
3
i

cl

4

g

&
“
i
i
i
i

L NIYRDO
LY Y

US 9,448,944 B2

Sheet 33 of 44

Sep. 20, 2016

U.S. Patent

#35

",

ZLyd WAL AHENG

$HE STHNLG:

§ A

SINIH OO JAR3A0

BN AM3ND

75 {OF 1 5ET | ¥R

v

ONldd

{3
T

LU
S3AND 193738

H
m

|

SENIH MO0
R0

2

Dbl G

g prmm—
9 avmnEl
7 124
FINAON TIO0N
JHED | NOLYINANNOS
b
MISNE AMAND

§7 bup

U.S. Patent Sep. 20, 2016 Sheet 34 of 44 US 9,448,944 B2

TAHLE LOGICAL TABLES

L% g -
Fi% i RE)

TABLE LOGICAL
N REPRESENTED TABLE
ST AS N e
. \)V ! \3 N \3 "“"‘“‘““'w‘ ~ 2?{‘} /
EE! { Ao st 3o - " ,‘,«f
. i G R DATA =
N I
&0 J IRV N N ta
v{»“'i LL LS e 0
] 518
518

[o:8)
P

¥

]
3
%,

a1 UTERS

%A
______________ R I T
"/
84
LOGICAL BESEIS

%, -
w b -
* &4

1\'38 e

FIG. 29 :

U.S. Patent Sep. 20, 2016 Sheet 35 of 44 US 9,448,944 B2

E-Y
%?%%%g" FHYSICAL~. TOUPLES - DATARASE
...................... T TARE gy’ SERVER
518 i B TR s16 | 64
FULL . ; » S
520) st B YT R 818 | 8¢
: P %”&z s | &
¥
aie R B YN R 518 | 8
AL
) T 8 518 | 84
¥
R4 A
218 e | | 515 | O 18 | 84
KEY
5ad N
S
518 » ” N
- WY e | BB 518 1 @
KEY ot ; P 5 5 §
MIXED) o . f"f 819 1 82
gof 4 KEY e A .
LREY«»«» S B e L 4

T1g. 30

U.S. Patent Sep. 20, 2016 Sheet 36 of 44 US 9,448,944 B2

880

\\8<‘ 42

o ¥ I
COMMUNICATION MODILE

RECEIVES A REQUEST FOR
DATA (E.G,, FULL SCAN)

% '

GUERY MODULE QUERIES

DATA BASE SERVERS
RECEIVE RESQULTS AND

RFOPULATE OBJECTS
816
¥ &
RESPOND TG DATA
ACCESS ORJIECY

Fig. 31

U.S. Patent

Tig. 32

Sep. 20, 2016 Sheet 37 of 44

US 9,448,944 B2

,f/"“‘\\i P
(\S&RT ¥
Nw“”x
525
¥ I
GET TUPLES
% 488
¥ 2

PROCESS A LQURRY

| CREATE ARND POPULATE
E DATA OBJECT

L
o
"

1

,f‘”x‘j MORE

S

< DATAINRESULTS >

U.S. Patent Sep. 20, 2016 Sheet 38 of 44 US 9,448,944 B2

586
&

- #
CE":&R? |

590
¥ . el
GET READ SET AND
LOGICAL TABLE NAME
¥ e
GET DOR HINT
N
¥ o
REQUERT TURLES
FROMDOR

4
. ,,.w""'f

F ﬁgs Sﬁﬁ 588
&

QUERY ENGINE 80 | DATA BASE SERVER 84

START

GENERATE AND
COMMURNICATE A
QUERY TO ADATA
BASE SERVER

k-4

¥

RECENE RESULTS ogeened GOMMURNICATE RESULTS

¥

-~ MM\) =
END s e END

e

U.S. Patent Sep. 20, 2016 Sheet 39 of 44 US 9,448,944 B2

12

“,‘-\ ﬁ
T

COMMUNICATION MODULE
RECEIVES A REQUEST
FOR DATA (E.G., MIXED)

. -
{

GUERY MODULE QUERIES
DATA SOURCES ARD
RECEIVES RESULTS AND

POPULATE OBJECTS
é §36
RESPOND TO DATA

ACCESS ORIECT

Fig. 34

U.S. Patent Sep. 20, 2016

Sheet 40 of 44

4

X

US 9,448,944 B2

518
y

e
@%R? |
536
3“/

GET TURES FOR OBECT

<_OBIECTS A_)_ﬁf‘it:;::.

YES - MORE ™

S

GENERATE PITCH LEVELS

™ 4
™, 25y
1
oA

¥ i

PROCESS A QUERY

?“0

e RESULTE
~INCWDE DATA THAT™

&?ﬁ%’?{‘ M A*\i G&ii:ﬁ? e

MARK OBJECT FOUND
AND POPULATE QJECT

e RES Lw& _A _i:f'j?::-:r-

YES " MORE "

P

\\
o,
e
o

_EUERIES N
. FETCH a&vg S

634
YES . m%«%& =

Tig. 35

x\ggw LE
. &

U.S. Patent Sep. 20, 2016 Sheet 41 of 44 US 9,448,944 B2

CLENT MACHINE | oy senet PROGRAM

{__._.“«-"'“ N et
¥
isisi"‘@%;g\ﬁ S

i T
: 806 SEARCH | ¢
: SERVERS | ¢
5 gg |
; ¥ ¥ ,
H 7 N
11 LISTING PAGE 11 PCTURE IBAPL BD EMAL AP ;
|| SERVERS || SERVERS || SERVERS || SERVERS || SERVERS || SERVERS :
¥ t . . 3
s z z
5 - P N | - §
L aPPUCATION | DATA 11 Lapopoanion | DATA appLcATION | DRTA B
Y oEmveR | |ACCESS cEmver | ACCESS N gaver | |AccESSH
e CLYER BT LAYER § LAYER
: 258 3 AL " H
? - - ;

OATASTORE

o

ADMINMNISTRATIVE ~824
APPLICATION{S)
FUNCTIONS

NETWORK-BASED COMMERCE BYSTEM

P e R

US 9,448,944 B2

Sheet 42 of 44

Sep. 20, 2016

U.S. Patent

L€ ‘Big

2]
GaL30uYL

| maviaus u

|

H

Z5%
THY
GALNGRILLY

T8y
CHC0EY
MOTLOYSHYRL

vy

L]
SOMLEN

B2

ZOMIISH
HATES

SNODOY SAMY G
|75] LN
3159
. &.ﬁwﬂw .
SONLLS p—
S Siud 75
31871, -
SONILET EECE
HOLYE |
pass e s
§UYIA0 s acTY
HOvECEE HOvHdS 1694 %350
FYEYL AN 44
SINISION RO I
AHEALYD

US 9,448,944 B2

Sheet 43 of 44

Sep. 20, 2016

U.S. Patent

6¢ ‘PLp

{gleuumu G AONIMEND DNITHE
(PHBGMNY QAN LY 00
{phogumu A LS

(e Lsquny JH005

{SHBqUINY SINLLYRAN

{3 e Y LA0AN

{Hisguin g AHLKNNGD

{snbun} {p8i7@unes Ty
{grusquny §EY 1

SyEp AONYHD LEY T QEsn

g18p (L0018

{prssnd

a0 Asy ydhious) [bolpmupima 1wk
{padhnue) (poizBUEA UOMESYY
{griemumy 21vLS HESN

(anbiuny {pg1z/ByRIBA (RIISN

CEE

{gehegumu 30V 3MHYA

Y.L HASH

M

&3

S
e il

g¢ ‘brp

LIS THHONIWEY
EIR A
(b0} O 30018
aryIEs
LVETIANRSTY
H190 IS0
S0ivd

01 ABODILYE
NOLLAIMOEE0

Qi

Z18Y.L DRILEN

U.S. Patent

500,
“

Sep. 20, 2016

Sheet 44 of 44

s »
o
wl

US 9,448,944 B2

s eves e s seotons

a02 910
PROCESSROR VIDED
e o I > THSPLAY
|| INSTRUCTIONS 4
804 ~308 81d
!._‘e‘ 37 {”.»'
MAIN MEMORY | ALPHA-NUMERIC
g e INPUT DEVICE
NSTRUCTIONS
Y25 B »
U 914
406 % ¢
|) | CURSOR CONTREL
| e < > BEVIE
STATIO MEMORY >
420 @18
,e"“/ {_,."'
NETWORK ; DRIVE UNIT
DRVICE MACHINE
894 READABLE
\ MEDIUM
\ % INSTRUCTIONS
‘g\ 828 Lo
1y A)
WA
A\ 418
\ o
\ SIGNAL
LA ool GENERATION
P DEVICE
™

Fig. 40

US 9,448,944 B2

1
METHOD AND SYSTEM FOR DYNAMIC
TEMPLATIZED QUERY LANGUAGE IN
SOFTWARE

RELATED APPLICATIONS

This application is a continuation application of U.S.
Utility application Ser. No. 11/008,776, filed on Dec. 8§,
2004, which claims the benefit of U.S. Provisional Appli-
cation No. 60/528,053 filed on Dec. 8, 2003, U.S. Provi-
sional Application No. 60/528,237 filed on Dec. 8, 2003, and
U.S. Provisional Application No. 60/528,238 filed on Dec. 8,
2003, which are all incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to the field of
electronic data management. More specifically, the inven-
tion relates to a method and system for dynamic templatized
query language in software.

BACKGROUND OF THE INVENTION

Technological advancements have led to more sophisti-
cated and powerful data management systems. Data pro-
cessing in such systems require efficient handling a large
number of data transactions (e.g. data reads and writes).

The advent of the Internet and the World Wide Web
combined with the development of network-based com-
merce system applications has enabled companies to trans-
act business globally in real time. Such network-based
commerce systems may processes large amounts of data
transactions from geographically separated users. The users
may enter transactional requests over communications lines
that result in the persistent storage of data in a master
information source. In several cases, back-end systems (e.g.,
database servers) support the master information source and
interact with other systems to map the data between a
persistent or relational form into an object form that is more
readily utilized by application software.

SUMMARY OF THE INVENTION

According to one aspect there is provided a method to
automatically generate query language in software. The
method includes receiving a request for data that is persis-
tently stored in a database; selecting a predefined query
template from a plurality of query templates based on the
request; receiving content from at least one of a plurality of
different sources, the first source being a prototype data
object; generating a query statement based on the query
template, the query statement including the content; and
querying the database using the query statement.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is now described, by way of example, with
reference to the accompanying diagrammatic drawings in
which like reference numerals are used to indicate the same
or similar features, unless otherwise indicated.

FIG. 1 is block diagram illustrating an exemplary data
access system, in accordance with an embodiment of the
invention;

FIG. 2 shows exemplary method, in accordance with an
exemplary embodiment, to map data;

FIG. 3 shows exemplary hardware and software modules
of the data access system, according to one embodiment;

15

20

25

40

45

55

60

65

2

FIG. 4 is a block diagram showing exemplary interactions
between hardware and software components of the data
access system, according to one embodiment;

FIG. 5 is a block diagram showing additional exemplary
interactions between hardware and software components of
the data access system, according to one embodiment;

FIG. 6 is a block diagram showing additional exemplary
interactions between hardware and software components,
according to one embodiment;

FIG. 7 is a block diagram illustrating a system, according
to one embodiment, to automatically generate software;

FIG. 8 is a block diagram illustrating classes that may be
generated for a new exemplary object, Foo;

FIG. 9 is a block diagram illustrating an exemplary
configuration file and class definition file;

FIGS. 10A-10M illustrate exemplary configuration file
meta-data;

FIG. 11 is a flow chart illustrating a method, according to
one embodiment, to automatically generate software for
accessing data;

FIG. 12 is a block diagram illustrating a system, accord-
ing to one embodiment, to automatically regenerate software
for accessing data;

FIG. 13 is a block diagram illustrating exemplary classes
that may be generated for a data access layer;

FIG. 14 is a block diagram illustrating exemplary classes
that may be generated for a business object layer;

FIG. 15 is a flow chart illustrating a method, in accor-
dance with an embodiment, to automatically regenerate
software for accessing data;

FIG. 16 is a block diagram illustrating exemplary inter-
actions between hardware and software components of a
data access system, according to one embodiment;

FIG. 17 is a block diagram illustrating exemplary soft-
ware components in a query engine, according to one
embodiment;

FIG. 18A is a block diagram illustrating various compo-
nents of a map, according to one embodiment;

FIG. 18B is a block diagram illustrating various further
exemplary components of the a map;

FIGS. 19-22 are exemplary keys to generalized place
holders, according to one embodiment;

FIG. 23A is a flow chart illustrating a method, in accor-
dance with an embodiment, to automatically generate query
language in software;

FIG. 23B is an interactive flow chart illustrating a method,
according to one embodiment, to query a database and
receive results;

FIG. 24 is a flow chart illustrating an exemplary method,
in accordance with one embodiment, to receive content and
generate a query statement;

FIG. 25A is a diagram illustrating an exemplary query
template, according to one embodiment;

FIG. 25B is a diagram illustrating an exemplary query
statement, according to one embodiment;

FIG. 26 A-D are flow charts illustrating exemplary meth-
ods to process place holders, according one embodiment;

FIG. 27 is a Hock diagram illustrating exemplary inter-
actions; between hardware and software components of a
data access system, according to one embodiment;

FIG. 28 is a block diagram illustrating exemplary soft-
ware components, according to one embodiment;

FIG. 29 is a block diagram illustrating exemplary repre-
sentations of data, according to one embodiment;

FIG. 30 is a block diagram exemplary request types,
according to one embodiment;

US 9,448,944 B2

3

FIG. 31 is a flow chart illustrating an exemplary method,
in accordance with an embodiment, to respond to a request
for data;

FIG. 32 is a flow chart illustrating an exemplary method,
in accordance with an embodiment, to query data sources,
receive results and populate objects;

FIG. 33Ais a flow chart illustrating an exemplary method,
in accordance with an embodiment, to get touples;

FIG. 33B is a flow chart illustrating an exemplary method,
in accordance with an embodiment, to process a query;

FIG. 34 is a flow chart illustrating an exemplary method,
in accordance with an embodiment, to respond to a request
for data;

FIG. 35 is a flow chart illustrating an exemplary opera-
tion, in accordance with an embodiment, to query data
sources, receive results and populate objects;

FIG. 36 shows exemplary details of network-based com-
merce system or facility wherein the data access system may
be deployed.

FIG. 37 is a database diagram illustrating an exemplary
embodiment of a database, maintained by and accessed via
a database engine server, which at least partially implements
and supports the data access system in accordance with an
embodiment of the invention.

FIGS. 38 and 39 are an exemplary listings and user tables
of the database.

FIG. 40 shows a diagrammatic representation of machine,
in the exemplary form of a computer system, within which
a set of instructions, for causing the machine to perform any
one of the methodologies discussed herein, may be
executed.

DETAILED DESCRIPTION

A method and system for dynamic templatized query
language in software are described. In the following descrip-
tion, for purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of
the present invention. It will be evident, however, to one
skilled in the art that the present invention may be practiced
without these specific details.

Although the invention is described merely by way of
example with reference to a network-based commerce sys-
tem, it is to be appreciated that it may apply in any data
processing network that processes a plurality of data trans-
actions (e.g., data read, data write, data delete, or the like
transactions). When the invention is applied in a network-
based commerce system or facility, it may host a plurality of
listings or items. The term “listing” or “item” may refer to
any description, identifier, representation or information
pertaining to a listing, service, offering or request that is
stored within a network-based commerce system. As such, a
listing may be an auction or fixed-price offering (e.g.,
products such as goods and/or services), an advertisement,
or a request for a listing or service

Prior art object to relational mapping systems as well as
other types of systems that persistently store data in a
database utilize Standard Query Language (SQL), and/or
other types of query languages, in a limited manner. Query
languages are generally utilized to access and manipulate
data in a database. For example, SQL may be used to insert
data into a database (e.g. relational) for the first time, read
the data from the database, update the data that is in the
database, and delete data from the database. Operations such
as these are performed with SQL statements that may be
generated at runtime and communicated to a database client
API. In general, prior art systems have failed to utilize the

10

15

20

25

30

35

40

45

50

55

60

65

4

inherent power in generating SQL at runtime and have relied
on predefined SQL statements to perform operations. For
example, the prior art object to relational mapping systems
provide a constant query string that is defined during devel-
opment that during runtime may only have the additional
ability of binding parameter values into a rigidly defined and
stagnant prepared statement string utilizing only standard
value binding mechanisms that are provided by the driver
for prepared statements. Additionally, any permutations in
the columns returned by a select query, or permutations in
the columns set by update/insert queries, resulted in prolif-
erations in the number of SQL statements that had to be
defined and maintained within the code base. Further, the
prior art rigidly defined SQL statements with a specific
physical table name that did not allow for any runtime
substitution of different table names with compatible
schema, thus preventing any general reuse and/or applica-
bility of a SQL statement. Prior art also rigidly bound a
defined SQL statement to a single data source, thus prevent-
ing any general reuse and/or applicability of a SQL state-
ment to horizontally scaled databases.

According to a first aspect of the invention there is
provided a method and system to automatically generate
software for an object to relational mapping system. The
system includes a code generator that automatically gener-
ates a number of related classes for a particular data object.
The classes provide various and complimentary services that
facilitate the data object to function in an information system
(e.g., provide access to persistently stored data). For
example, one class may include methods to create and delete
the data object. Another exemplary class may include run-
time meta-data that facilitates the population of the data
object with data.

According to a second aspect there is provided a method
and system to automatically regenerate software for an
object to relational mapping system. The system provides
for a code regenerator that automatically regenerates a
number of base classes without impacting custom code.
Thus, the base classes may be modified by adding or
removing meta-data (e.g., adding an attribute to a data
object, removing an attribute from a data object, adding a
new query, etc.) and automatically regenerated to function
with custom code without impacting the custom code.

According to a third aspect there is provided a method and
system to automatically generate query language in soft-
ware. The system enables receiving a request for data that is
persistently stored in a database. Next, the system selects a
predefined query template from a number of query templates
based on the type of request and other information. The
system utilizes the predefined template at runtime to identify
content and mark a position in a query statement to store the
content. The content may be received from a number of
different sources that perform varied operations and generate
a variety of SQL language and runtime values that may be
executed in the SQL statement.

According to a fourth aspect, there is provided a method
and system for a transparent application of multiple queries
across multiple data sources. The system receives a single
request for data from an application program and determines
the location of the physical tables and the database servers
that store the requested data. Next, the system communicates
a query to each database server to read the physical table that
includes the desired data. The system then receives and
processes results that are returned by the database server that
may include the desired data. After receiving the desired
data, the system populates the data to one or more data

US 9,448,944 B2

5

objects and responds to the application program that the data
objects have been found and populated.
Exemplary Data Transaction Processing System

FIG. 1 illustrates a data access system 10, according to
one exemplary embodiment of the invention. The data
access system 10 is shown broadly to include a business
layer 12, a data access layer 14 and a persistent layer 16 that
may include one or more databases 24. The business layer 12
provides business objects 13 to an application domain 18.
These business objects 13 hold references to data objects 20,
which are obtained from the data access layer 14. The
application domain 18 may request services or data trans-
actions with regard to the business objects 13, which is
performed utilizing the data objects 20 and the data access
layer 14. In the exemplary embodiment the application
domain 18 utilizes data in the form of the data objects 20
which are provided to the application domain 18 either
directly in the form of the data object 20 or indirectly via the
business layer 12 encapsulated in the business object 13. To
this end, the data access layer 14 receives and processes
requests for one or more data objects 20 and may interact
with the data objects 20 to build complex structures. For
example, the data access layer 14 may build object-graphs,
multiple data objects 20 that are linked to other related or
associated data objects 20. Further, the data access layer 14,
or business layer 12, may provide caching services by
providing data objects 20 to the application domain 18 upon
request without accessing the database 24. Thus, the data
access layer 14, manages the data objects 20 and provide
access to the data objects 20 in response to requests from the
application domain 18 either directly or via the business
layer 12. The application domain 18 may generally be the
ultimate consumer and/or originator of the data contained in
the data objects 20.

The data access layer 14 may provide various data pro-
cessing services and thus includes various data processing
modules. For example, the data access layer may include
mapping services 26, routing services 27, and translation
services 28. The mapping services 26 may map data between
data objects 20 and table(s) in the database(s) 24. For
example, the persistent layer 16 may store data 22 that is
contained by the data objects 20 in the exemplary form of
physical tables in physical databases 24. To this end, the data
access layer 14 may maintain meta-data that defines a
one-to-one correspondence between each attribute contained
in a data object 20 and each field in a logical table or the
aggregate response of a function performed in the database.
In addition, the mapping services 26 may provide a high
degree of flexibility to redirect the location of the data 22
from one logical table to another logical table. The routing
services 27 may map a logical host and table to a corre-
sponding physical table and a physical database 24. In one
exemplary embodiment, the routing services 27 identify an
alternate physical database 24 in the event that a physical
database cannot be accessed or may respond to a deliberate
relocation of a logical table from one physical database to
another. The translation services 28 may translate requests
regarding data objects 20 into appropriate database language
(e.g., SQL) for communication with the persistent layer 16.
The translation services 28 may dynamically determine
values and introduce values into the database language
based on runtime parameters. In general, the data access
layer 14 may provide primitive services to the business layer
12. For example, the data access layer 14 may process a
single type of data object 20 in response to a single request
from the business layer 12. It will however be appreciated to
a person of skill in the art that various other functional

10

15

20

25

30

35

40

45

50

55

60

65

6

modules may be included in the data access later in addition
to, or instead of, the exemplary mapping services 26, routing
services 27 and translation services 28.

The persistent layer 16 provides data services to the data
access layer 14 and is shown to include one or more
databases 24 that persistently store physical tables that store
the data 22. To this end, the persistent layer 16 receives and
responds to database language that is communicated from
the data access layer 14 to access the physical tables.
Exemplary tables of the database 24 are described in more
detail later in this application with reference to a network-
based commerce system.

FIG. 2 illustrates exemplary object to relational mapping,
as practiced in the art. Object to relational mapping operates
on data that is shown to be mapped between a data object
and a table that is stored in a database (e.g., a relational
database). Object to relational mapping may be performed
by mapping services 26 (see FIG. 1) in the data access
system 10 to map data between exemplary data objects 20
and one or more exemplary tables 32.

By way of example, each data object 20 is shown include
attributes 34 and processes or methods 36. The exemplary
data objects 20 are described merely by way of example with
reference to a network-based commerce system and, accord-
ingly, the attributes 34 are shown to include a description
attribute 40, a color attribute 42 and a price attribute 44 that
may be utilized to characterize a particular listing (e.g., a
listing/item for sale in the network-based commerce sys-
tem). For example, the data object 20 may be instantiated as
an item-for-sale object 38 that includes attributes 34 that
include the description attribute set to a value of “BALL”,
a color attribute 42 set to a value of “RED” and a price
attribute 44 set to a value of “$1.00.”

The exemplary table 32 is shown to be “an items-for-sale”
table and includes rows 50 and columns 53 the intersection
of which store attribute values for an item for sale. Each
column 53 corresponds to an attribute 34 (e.g., description
attribute 40, color attribute 42 and price attribute 44) that is
shared by the item for sale objects 38, 41, 43 and stores
properties for the respective objects. Further, each row 50 in
the table 32 also corresponds to the item for sale objects 38,
41 and 43. It will be appreciated that further tables 32 may
be provided to extend the “items-for sale” table and that
entries in these tables may include additional attributes 34
and additional items for sale.

FIG. 3 illustrates hardware and software components of
the data access system 10, according to one exemplary
embodiment. The data access system 10 includes an appli-
cation server 62 and a database server 64 that communicate
over a communication link 65. The application server 62 is
shown to include a business layer 12 and a data access layer
14. The business layer 12 includes business object factories
71, business objects 13, and business object caches 73. The
data access layer 14 includes data access objects 68, caches
70, data objects 20, map objects 76, a query engine 80, and
a dynamic data routing module (DDR) 78. Some of the
components may be dedicated to a specific type of object.
For example, the data access object 68, the data object 20,
the data object map object 76, business object factory 71,
and the business object 13 may be identified with the term
“item” in their name thereby denoting a group of objects that
may be utilized to perform different services with respect to
an “item” object. Other components may not be dedicated to
a specific type of object; but rather, may provide services for
all types of objects. For example, the query engine 80, the
DDR module 78 and the cache 70 may be not identified with
a prefix.

US 9,448,944 B2

7

The data access object 68 may be utilized by the appli-
cation domain 18, via the business layer 12 or directly, to
manipulate data objects 20. For example, the data access
object 68 may be utilized to find a data object 20, update data
from the data object 20 into the database 24, insert data from
the data object 20 into the database (create a row) and delete
data in the database 24 that is contained by the data object
20. Further, the data access object 68 may utilize the cache
70 to determine if a particular data object 20 is already
resident on the application server 62 or to save a data object
20 in the cache 70. In general, the data access object 68 may
be utilized by the application domain and/or business layer
12 to manipulate the data objects 20.

The cache 70 provides the ability to store any type of data
object 70 in memory and the business object cache 73
provides the ability to store any type of business object 13
in memory thereby providing mechanisms to reduce load on
the database server 64. Accordingly, if an object is already
in the cache 70, 73 the database 24 need not be accessed. It
will be appreciated that the data objects 20 and business
objects 13 stored in the respective caches 70, 73 may be
utilized by single threads and/or multiple threads.

The data object 20 holds the data 22 that is read from the
database 24. To this end, the data object 20 includes attri-
butes 34 that may be populated by the query engine 80 with
the data 22 and accessed by the application domain 18 via
the getter and setter methods associated with the data object
20 and/or the corresponding business object 13.

The business object factory 71 may be utilized by the
application domain 18 to get a business object 13. The
business object factory 71 may invoke the data access object
68 to create the corresponding data object 20 and the
business object 13 that encapsulates the data object 20.

The business object 13 may be utilized by the application
domain 18 to access the data contained by one or more data
objects 20. To this end, the business object 13 may encap-
sulate one or more data objects 20 and may provide business
logic that is appropriate to the data contained by the under-
lying data object(s) 20. For example, a data object 20 that
contains data 22 in the form of sexually explicit material
may be associated with a business object 13 that includes
business logic that prohibits a minor from viewing the data
22. In addition, the business object may participate in the
construction of object-graphs.

The map object 76 includes the processes or methods 36
and meta-data that provide for mapping, query template
definitions, set definitions, and transformation rules, also in
accordance with an embodiment of the invention. Meta-data
is provided for mapping between attributes 34 and physical
table columns 53 (see table 32 in FIG. 2) and mapping
between physical table names and logical table names. In
one exemplary embodiment, meta-data may include query
templates that may include SQL statements with embedded
tags that may be substituted with SQL parameters at runtime.
In addition, the meta-data provides for set definitions that
define groups of attributes in the data object 20. Set defini-
tions may include read sets for reading a group of attributes
from a table in the database 24 and populating only a sub-set
of the attributes on data object 20; update sets for writing
only a sub-set of attributes from the data object 20 to an
existing row in the database 24; and, insert sets for writing
a sub-set of attributes from the data object 20 that results in
an insertion of a row in the database 24. The meta-data
further includes transformation rules that may be applied to
transform data that is read from or written to the database 24.
For example, a string may be converted to a desired format
when read from the database.

10

15

20

25

30

35

40

45

50

55

60

65

8

The DDR module 78 may include logic that identifies the
physical location that may be accessed to obtain requested
data 22. For example, the DDR module 78 may be passed a
hint and a logical table from the query engine 80 and may
respond by returning a corresponding physical table and
physical database. To this end the DDR module 78 may
utilize a text file that includes rules to process the logical
table and the hint. For example, a logical table for “items-
for-sale” may be passed with a hint that specifies an item
number. The DDR module 78 may utilize rules to locate the
physical table(s) and physical databases 24 that store a
specific “item-for-sale” that has an item number that
matches the hint. Moreover the rules may be modified
during runtime to move a logical table to a different physical
table and/or physical database.

The query engine 80 builds queries, acquires connections
to the database 24 based on a response from an inquiry to the
DDR module, executes SQL queries (e.g.; SELECT,
INSERT, UPDATE, DELETE, etc.) and moves data to/from
database 24 fields in/out of data objects 20. The query engine
may be accessed exclusively by the data access object 68
and utilizes java database connectivity (JDBC) application
processing interfaces (API) to read/update the database 24.

FIG. 4 is a block diagram 90 showing exemplary inter-
actions between hardware and software components of the
data access system 10. The diagram 90 shows, by way of
example, the above components working together to update
a data object 20 for an item-for sale. Illustrated on the left
is an item-for-sale data access object 68 that receives a
request from the application domain 18 for an item-for-sale
data object 20, “findByPK” (e.g. find by primary key).
Responsive to the request, the data access object 68 may
create the item-for-sale data object 20. Next the data access
object 68 may direct the query engine 80 to populate the
item for-sale data object 20 by invoking the query engine 80
with a reference to the item-for-sale data object 20, a
reference to the item-for-sale map object 76, a query defi-
nition that specifies a query template to read from the
item-for-sale map object 76 and a read set definition that
specifies the columns 53 or field names 52 to return from the
database 24. The query engine 80 may utilize mapping
between attributes 34 and table fields 52 in the item-for-sale
map object 76 to determine the logical table(s) to pass to the
DDR module 78. In response, the DDR may return the
corresponding physical table and physical database 24 that
may be utilized by the query engine 80 to make a connection
to the proper database 24 via a connection object. In
addition, the query engine 80 may utilize the query defini-
tion passed from the item-for-sale data access object 68 to
read the proper query template from the item-for-sale map
object 76 and substitute runtime values for tags which
appear in the query template. Finally, the query engine 80
executes the query and receives results that the query engine
80 may populate to the data object 20.

FIG. 5 is a block diagram 92 showing additional exem-
plary interactions between hardware and software compo-
nents of the data access system 10. The data object 20 is
shown to include an item-for-sale data object implementa-
tion 75 and an item-for-sale data object interface 74. The
data object interface 74 is a public interface that may be
utilized by the application domain 18. Thus, the data object
interface 74 may define a front end to the data object 20 that
provides an abstraction layer for different data object imple-
mentations 75 that may respectively be utilized to access
different persistent storage implementations. For example,
one implementation may include getter() and setter()
methods that are compatible with one database interface and

US 9,448,944 B2

9

another implementation may include getter() and setter()
methods that are compatible with another database interface
or persistent store. The same concept may be utilized with
respect to the business object 13. In addition, the application
domain 18 may pass additional information that is utilized to
identify the requested item-for-sale. For example, the appli-
cation domain 18 may pass a primary key in the form of an
item number to the data access object that, in turn, may pass
the item number to the query engine 80 that, in turn, may
pass the item number to the DDR module 78 that, in turn,
may utilize the item number along with the passed logical
table to identify the corresponding physical table and physi-
cal database. Such information is referred to as a hint and
may be passed by the item-for-sale data access object 68 to
the query engine 80 via an attribute in the item-for-sale data
object 20 (e.g., referred to as a prototype data object when
used in this manner) or via a hint hash table that is defined
by meta-data in the item-for-sale map object 76. Finally, the
data access object, in some instances, may obtain the item-
for-sale data object 20 and the associated item-for-sale from
the cache 70 rather than creating the respective objects.

FIG. 6 is a block diagram 94 showing another embodi-
ment utilizing the interactions between hardware and soft-
ware components during execution of the method 90. The
method 90 is shown as implemented in a Java Virtual
Machine (e.g., process) 81 delivered in an Enterprise Appli-
cation Archive 83, a standard deployment module based on
Java 2 Enterprise Edition. Further, the method 90 is illus-
trated as implemented in a standardized architecture that is
utilized to build enterprise applications. Enterprise applica-
tions are typically layered and segmented according to
functions that may be characterized according to a presen-
tation tier 85, a business tier 87, an integration tier 89 and a
resource tier 91 which respectively correspond to the pre-
viously discussed application domain 18, business layer 12,
data access layer 14 and persistent layer 16. The presentation
tier 85 generates presentations (e.g., HTML, XML, etc.) that
are presented to the user and receives responses from the
user. The presentation tier 85 is shown to communicate with
the business tier 87 that executes business logic and com-
municate with the integration tier 89 which provides data in
encapsulated in data objects 20. The integration tier 89 is
shown to communicate with the resource tier 91 which
persistently stores the data.

As illustrated, in the above figure and previous figures the
data access layer 14 may be an object oriented abstraction
for accessing and updating data in a distributed persistence
resource database 24). All persistence resource CRUD (cre-
ate, read, update delete) operations may be performed
through the data access layer 14 abstraction. Advantages of
using the data access layer 14 include decoupling the
persistent layer 116 from the other layers, encapsulation and
translation of the data 22 from a persistence resource format
(e.g., database fields) to objects format (e.g., data objects
20), encapsulation of a failover mechanism. In general, the
data access layer 14 provides a consistent, transparent,
object oriented application processing interface for access-
ing and updating the data 22 in distributed persistence
resources.

FIG. 7 is a block diagram illustrating a system 100,
according to an exemplary embodiment, to automatically
generate software. The system 100 is shown to include a
software development computer or machine 106 that reads
a configuration file 102 and a class definition file 104 and
generates a class that may be categorized as a subclass 108,
a base class 110, or a skeleton class 112. A class may be
likened to a cookie cutter. For example, a cookie cutter may

25

40

45

10

be used to cut a cookie that resembles the cookie cutter. In
a similar manner, a class may be used to instantiate (e.g.,
generate) a data object 20 at runtime that bears the imprint
of the class (e.g., attribute names, attribute types, and other
meta-data).

The configuration file 102 may include meta-data in the
form of XML meta-data to generate classes for an object to
relational mapping system, also in accordance with the
invention. The configuration file 102 may include meta-data
that is generated by a data base schema utility 103 that
automatically generates the meta-data and an editing process
105 that may utilize manual and/or automatic processes to
generate the meta-data.

The data base schema utility 103 reads one or more
databases 24 that include at least one table 107 and generates
XML meta-data in the form skeleton information describing
a data object 20. The skeleton information may include one
or more attributes that are assigned names based on the
names of the fields in the table 107. In addition, each
attribute may be assigned an assumed type, and a logical
table name.

The class definition file 104 includes one or more tem-
plates 109 that include definitions for classes that are gen-
erated by the software development machine 106. Specifi-
cally, each template defines rules that may be applied to the
meta-data in the configuration file to generate a class (e.g.,
the subclass 108, the base class 110 or the skeleton class
112). The template 109 may include inheritance information
that may be applied to the class. For example, a template 109
may take the form of an XSL templates defined in XSL
Transformations (XSLT), published by the World Wide Web
consortium (2004).

The software development machine 106 includes a code
generator 114 that includes a read module 116 and a class
generator module 118. The read module 116 may be utilized
to read the class definition file 104 and the configuration file
102. The class generator module 118 generates the appro-
priate class responsive to receiving the corresponding meta-
data from the configuration file 102 as directed by the rules
and meta-data in the appropriate (e.g., selected) template
109.

The base classes 110 have progeny in the respective
subclasses which inherit from the base class 110. The base
class 110 includes a codegen (code generator) data object
interface class 120, a codegen data object implementation
class 122, a codegen map class 124, a codegen business
object interface class 126 and a codegen business object
implementation class 128. The base classes 110 may include
boiler plate and infrastructure code that may automatically
be regenerated after the initial generation. The prefix “code-
gen” may be used to identify abuse class 110 that may be
regenerated on successive regenerations of the software.

The subclasses 108 may inherit from the base classes 110.
For example, a data object interface class 130 may inherit
from a codegen data object interface class 120. The sub-
classes 108 may include the data object interface class 130,
a data object implementation class 132, a map class 134, a
business object interface class 136, and a business object
implementation class 138. The subclasses 108 may be
generated once and provide for the addition of custom code
that may take the form of a method that abstracts the data in
a custom manner or a method that overrides a corresponding
method in the base class 110, or a method that augments
functionality in the corresponding base class 110 (e.g., adds
functionality not provided for by the base class 110).

The skeleton classes 112 may be generated only once and
provide for the addition of custom code. The skeleton

US 9,448,944 B2

11

classes 112 includes a data access object class 140, a data
access object test class 142, a business object factory class
144, a business object factory implementation class 146, and
a business object factory test class 148. The data access
object test class 142 and the business object factory test class
148 may be utilized to add custom code to unit test all of the
related classes (e.g., a subclass 108, a base class 110, and a
skeleton class 112). The term “factory” as included in the
above mentioned classes denotes, but is not limited to, an
object that encapsulates the creation of objects inside a
single interface. The data access object class 140 is also a
factory, but it has significant additional responsibilities in
carrying out CRUD operations on the data objects 20.

FIG. 8 is a block diagram illustrating classes, according to
one embodiment, that may be generated for a new exem-
plary object Foo. The same reference numerals identify the
same or similar classes previously described.

FIG. 9 shows an exemplary configuration file 102 and a
class definition file 104 that are utilized to automatically
generate and regenerate software for accessing data, accord-
ing to one embodiment. The configuration file 102 includes
meta-data for describing a data object and related software
that may be required to facilitate the data object to function
in an information system. Other embodiments may include
meta-data for describing multiple data objects and their
corresponding related software.

The configuration file 102 includes data object skeleton
information 200, code generation attributes 202, imports
204, field mappings 206, DDR hint definitions 232, query
information 234 and data access object skeleton information
208. The data object skeleton information 200 may be
generated by the database schema utility 103 and has been
described above. The code generation attributes 202 may
include attributes relating to the class name, package names
for the generated code, top level controls of generated
classes and tracking information.

The imports 204 may include statements that may be
added to the generated classes and include data object
import statements 210 and business object import statements
212. The imports 204 may only be required for custom
sub-object types.

The field mappings 206 may include the meta-data for
mapping data. The field mappings 206 are shown to include
query definitions 214, set definitions 216, table definitions
218, table joins 222, and field mappings 224.

FIG. 10A illustrates an exemplary query definition 214.
Each query definition 214 includes a query name 215 that
may be used to reference the queries that are defined in the
map object 76. For example, the query name 215 for the
“find by primary key” query and the “insert primary key”
query are illustrated.

FIG. 10B illustrates exemplary set definitions 216. The set
definitions 216 define constants 217 that may be used to
reference the reads sets and update sets that are defined in
the map object 76. For example, definitions for the “mini-
mum” read set and the “minimum” update set are illustrated.

FIG. 10C illustrates an exemplary table definition 218.
The table definition 218 defines a logical table name 240 and
a logical table alias 242 for the logical table name 240. For
example, table definitions 218 for the “User” logical table
and the “UserInfo” logical table are defined with respective
aliases “u” and “ui”.

FIG. 10D illustrates an exemplary table join 222. The
table join 222 includes an SQL join snippet 244 (e.g., a
fragment of an SQL statement) and two logical table names
240. The SQL join snippet 244 includes two logical table

10

15

20

25

30

35

40

45

50

55

60

65

12

alias’ 242 that appear connected by a period (“.”) to the
respective field names 52 (e.g., u.ID).

Returning to FIG. 9, the field mappings 224 include
definitions for attributes 34 in the data object 20. Each
attribute 34 may be defined as utilizing full field mapping
246, hint field mapping 248, hashhint field mapping 250,
contained field mapping 252, or subobject field mapping
254.

FIG. 10E illustrates an exemplary full field mapping 246.
The full field mapping 246 may be used to map data between
a data object attribute and a table column 53. The full field
mapping 246 is shown by way of example to include a full
name 247, a logical table name 240, a field name 52 (e.g.,
column 53), an attribute type, and indicators for getter() and
setter() methods. The full name 247 may be utilized to
generate an attribute name 256 (not shown) that may be used
on getter() and setter() methods included in the data object
implementation 75 and the data object interface 74. In
addition, the attribute name 256 may be prefixed with “m_"
(e.g., m_id) to create a variable name for the attribute 34 on
the data object implementation 75 and prefixed with “:m”
(e.g., :m_id) for SQL reference. The logical table name 240
and the field name 52 may be utilized to persistently store
the attribute 34 in the database 24. The indicators may be
used for creating getter() and setter() methods for the data
object 20 and the business object 13 with the asserted value
(e.g., TRUE) indicating to create the methods. Transforma-
tion functions can also be associated with the mapping to
transform the data either being read from the database and/or
being written to the database (e.g. transforming a boolean
attribute to and from a value of 0 or 1 in the database).

FIG. 10F illustrates an exemplary hint field mapping 248.
The hint field mapping 246 includes a hint name 249 and
other attributes that that may be utilized to generate an
attribute name 256 (not shown) as previously described. The
hint field mapping 248 may identify an attribute in a data
object 20 that may be utilized to pass a hint to the DDR
module 78 or as additional selection criteria in the WHERE
clause for a query (e.g. range values for a start and end date)
and therefore it need not be associated with a field name 52
(e.g., column 53) or a logical table name 240 to persistently
store data.

FIG. 10G illustrate an exemplary hash hint field mapping
250. The hash hint field mapping 250 includes a hash hint
name 251 that may be utilized to generate an attribute name
256 (not shown) as previously described. The hash hint
value may be stored in an internal hash table in a codegen
data object implementation class 122. The hash hint value
may be utilized to pass a hint to the DDR module 78 or as
additional selection criteria in the WHERE clause for a
query and therefore it need not be associated with a field
name 52 (e.g., column 53) or a logical table name 240 to
persistently store data. The attribute name 256 may be used
for SQL reference, (e.g. :+startTime).

FIG. 10H illustrates an exemplary contained field map-
ping 252. The contained field mapping 252 includes attri-
butes for a contained subobject. The contained field mapping
252 includes a contained name 253 that may be utilized to
generate an attribute name 256 (not shown) as previously
described. The contained field mapping 252 includes a map
class name 221 of the map (e.g., ContactInfoMap) for the
contained subobject with .getInstance() appended, an object
class name 223 of the contained subobject (e.g., Contactln-
forDolmpl) with “.class” appended, an attribute type 229
(e.g., Currency) which is the external type for the contained
subobject (e.g. DOI) and other attributes that have previ-
ously been described. A contained field mapping allows for

US 9,448,944 B2

13

the data for a contained sub-object to be retrieved in the
same query as the query for the parent object.

FIG. 101 illustrates an exemplary subobject field mapping
254. The subobject field mapping 254 includes a subobject
name 255 that may be utilized to generate an attribute name
256 (not shown) as previously described. The subobject field
mapping 254 includes attributes for a non-contained subob-
ject. The subobject field mapping 254 includes a foreign key
attribute name 227 from the subobject (e.g., currencylD) that
may be used to set a foreign key value onto a containing
parent’s foreign key attribute (e.g. billing currency) for the
subobject, when a subobject is assembled onto a parent
object (e.g. setting a currency object onto a user object as its
billing currency, the value of the currency ID of the currency
object is copied to the user object’s billing currency ID
attribute).

FIG. 10J illustrates an exemplary ddr hint definition 232,
according to one embodiment. The ddr hint definition 232
defines a default global hint definition 260 and named
specialized hint definitions 263. The default global hint
definition 260 and the named specialized hint definitions 263
include one or more member names 261. The member name
261 corresponds to a full name 247, or a hint name 249 or
a hash hint name 251 the definitions for the full name 247,
hint name 249 and/or hash hint name 251 are associated with
the member name 261).

FIG. 10K illustrates an exemplary read set 228. Each read
set 228 defines a set of attributes 34 that the application
domain 18 may request to be read from the database 24 and
populated to the data object 20. Each read set 228 may
include a read set name 262, one or more member names 261
and an optional full set flag that may be asserted TRUE (e.g.,
read all attributes of the data object 20). The member name
261 corresponds to a full name 247 (e.g., the definitions for
the full name 247 are associated with the member name
261).

FIG. 10L illustrates an exemplary update set 230. Each
update set 230 defines a set of attributes 34 that may be
updated from the data object 20 to the database 24. Each
update set 230 may include an update set name 258, one or
more member names 261. The member name 261 corre-
sponds to a full name 247 (e.g., the definitions for the full
name 247 are associated with the member name 261).

FIG. 10M illustrates the query information 234, according
to one embodiment, for a SELECT SQL query template. The
query information 234 includes a query name 215, as
defined in the query definitions 214, a read set name 262,
and a query template 384. The query name 215 and the read
set name 262 may be utilized to identify the corresponding
query template 384. The query template 384 includes static
query fields that may include standard SQL language (e.g.,
SELECT, FROM, WERE, etc.) and dynamic query fields
that may include place holders (e.g., <SELECTFIELDS/>,
<TABLES/>, :m_userld, <JOIN/, etc.> that may be substi-
tuted for specific content at run time. Although a single
SELECT SQL query template 384 is illustrated it will be
appreciated that other types of query templates 384 may be
defined (e.g., INSERT, UPDATE, DELETE, etc.).

Returning to FIG. 9, the data access object skeleton
information 208 includes method skeleton definitions. The
method skeleton definitions include a method name, a return
type, a method type (i.e. finder, update, insert, delete, etc.),
a list of argument definitions containing argument name and
type, etc. This information is used to generate a skeleton
method in the data access object classes that has all of this
information incorporated into it and some initial basic code

10

15

20

25

30

35

40

45

50

55

60

65

14

in it for performing the indicated method type operation, as
well as having the proper associated exception declarations
on the method signature.

The class definition file 104 includes a template 109 (see
FIG. 7) for each class that is generated by the code generator
114. For example, the class definition file 104 may include
a data object interface template 280, a codegen data object
interface template 282, a data object implementation tem-
plate 284, a codegen data object implementation template
286, a map template 288, a codegen map template 290, a
business object interface template 292, a codegen business
object interface template 294, a business object implemen-
tation template 296, a codegen business object implemen-
tation template 298, a data access object template 300, a data
access object test template 302, a business object factory
template 304, a business object factory implementation
template 306, and a business object factory test template
308. Each template may specify meta-data to extract from
the configuration file 102 and definitions to generate the
corresponding class. It will be appreciated that other tem-
plates may be provided, in addition to or instead of, the
exemplary templates shown in the class definition file 104.

FIG. 11 is a flow chart illustrating a method 330, in
accordance with the invention, to automatically generate
software for accessing data. The method 330 is described by
way of example with reference to the system described
above and commences at operation 332 with the read
module 116 reading an XSL template 109 from a class
definition file 104. At operation 334, the read module 116
utilizes the XSL template 109 to read the appropriate XML
meta-data from the configuration file 102. Thereafter, at
operation 336, the class generator module 118 utilizes the
XML meta-data to automatically generate the class as
defined by the XSL template 109.

At decision operation 338, the read module 116 deter-
mines if there are more templates 109 in the class definition
file 104. If there are more templates 109 in the class
definition file 104 the read module 116 branches to operation
332. Otherwise the method 330 ends.

Thus, broadly, a method and system to generate software
code for an object to relational mapping system have been
described. This approach includes the automatic generation
of multiple and related classes that are utilized to instantiate
objects and provide meta-data that facilitate object to rela-
tional mapping for a specific class as described herein. This
approach may allow increased productivity by eliminating
hand coding of software code in the related classes leading
to consistent, maintainable, and robust software code by
reducing mistakes and variations created by hand coding of
the related classes.

FIG. 12 is a block diagram illustrating a system 340, in
accordance with an embodiment of the invention to auto-
matically regenerate software for accessing data. The system
340 is shown to include a software development computer or
machine 106 that reads a configuration file 102 and a class
definition file 104 and regenerates classes for a base class
110.

The configuration file 102 may include meta-data in the
form of XML meta-data that has been modified. For
example, the configuration file 102 may include additions,
modifications, or deletions of meta-data in the configuration
file 102 that were originally utilized to generate the base
classes 110. In this manner, the base classes 110 may be
regenerated without impacting custom code included in the
originally generated subclasses 108 and/or the skeleton
classes 112. For example, an attribute may be added or
removed from a base class 110, an attribute may be relocated

US 9,448,944 B2

15

to a different logical table, or an SQL statement may be
modified that is utilized by one of the classes in the base
class 110. Each of these exemplary changes may be included
in the bases classes 110 through code regeneration without
impacting on custom code that is associated with a class in
the subclass 108 and/or the skeleton class 112.

The class definition file 104 (see FIG. 9) is shown to
include the codegen data object interface template 282, the
codegen data object implementation template 286, the code-
gen map template 290, the codegen business object template
298, and the codegen business object implementation tem-
plate 306.

The software development machine 106 may include a
code regenerator 342 that includes a read module 344 and a
class generator module 118. The read module 344 may be
utilized to read the class definition file and the configuration
file 102. The class generator module 118 generates the
appropriate class responsive to receiving the appropriate
meta-data from the configuration file 102 as directed by
rules and meta-data in the corresponding template 109.

FIG. 13 is a class diagram illustrating exemplary data
access layer classes 346 that may be generated for an
exemplary object Foo and an exemplary sub-object Bar. The
same reference numerals identify the classes previously
discussed. The arrows indicate inheritance relationships.
Horizontal arrows indicate an interface inheritance and
vertical arrows indicate extension of an object inheritance.
For example, as illustrated, a bar data object interface class
130 inherits from a BarCodeGen data object interface class
120 that, in turn, inherits from a Foo data object interface
class 130 that, in turn, inherits from a FooCodeGen data
object interface class 120. Another example may include a
bar data object implementation 132 that inherits from the bar
data object interface class 130.

FIG. 14 is a block diagram illustrating exemplary busi-
ness object layer classes 348 that may be generated for an
exemplary object Foo. The same reference numerals identify
the classes previously discussed.

FIG. 15 is a flow chart illustrating a method 350, in
accordance with an aspect of the invention, to automatically
regenerate software for accessing data. The method 350 is
described by way of example to the system described above
and commences at operation 352 with the read module 344
reading an XS template 109 from a class definition file 104.
Thereafter, at operation 354, the read module 344 utilizes the
XSL, template 109 to read the appropriate XML meta-data
from the configuration file 102. At operation 356 the class
generator module 118 utilizes the XML meta-data to auto-
matically generate a base class 110 as defined by the XSL
template 109. For example, the class generator module 118
may regenerate a codegen data object interface class 120, a
codegen data object implementation class 122, a codegen
map class 124, a codegen business object interface class 126
or a codegen business object implementation class 128 (see
FIG. 12).

At decision operation 358, the read module 344 deter-
mines if there are more templates 109 in the class definition
file 104. If there are more templates 109 in the class
definition file 104 the read module 344 branches to operation
332. Otherwise the method 340 ends.

In one embodiment the method and system to regenerate
software code may include base classes 110 (e.g., the
codegen map class 124, the codegen business object inter-
face class 126 and the codegen business object implemen-
tation class 128 shown by way of example in FIG. 7)) that
may include meta-data and code that are sufficient for partial
population of a data object 20. For example, the codegen

10

15

20

25

30

35

40

45

50

55

60

65

16

map class 124 may include code embodying the meta-data
for a read set 228 that includes field mappings 206 that do
not name all of the attributes 34 in the data object 20, and
a query information 234 (see FIG. 9) that may include a
query template that references the read set 228. In addition,
the codegen business object interface class 126 and the
codegen business object implementation class 128 may
include methods to invoke the data access object 68 to utilize
the query information 234 with the read set 228 that specifies
the partial fill.

Thus, a method and system to automatically regenerate
software has been described. Although the invention has
been described with reference to specific exemplary embodi-
ments, it will be evident that various modifications and
changes may be made to these embodiments without depart-
ing from the broader spirit and scope of the invention.
Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

FIG. 16 is a block diagram illustrating exemplary inter-
actions between hardware and software components of a
data access system 371, according to one embodiment. The
data access system 371 corresponds to the data access
system 10 and, accordingly, the same or similar references
have been used to indicate the same or similar features
unless otherwise indicated. Broadly, the data access system
371 dynamically constructs and executes query language
statements and is shown to include, an item map 360, an
item data access object 362, an item data object 364, a query
engine 80, a data dependent routing (DDR) module 78, a
database server 64, and a database 24. The item data access
object 362 is shown to receive a request for an item data
object 364 from the application domain 18. The request may
include a primary key to locate the item data object 364 in
the database 24 and an indication of attributes 34 in the item
data object 364 that should be populated. For example, the
item data access object 362 may receive an item number
(e.g., primary key) that may be used to locate a cereal box
(e.g., item) in the database 24 and an indication that only the
description of the cereal box is requested (e.g., the column
53 corresponding to the description attribute 34 should be
the only column 53 requested in the query to the database
and should be the only attribute 34, besides the provided
item id, populated onto the item data object 364 returned).
In response, the item data access object 362 gets a new item
data object 364, initializes the item data object 364 with the
item number (e.g., prototype item data object), gets a
reference to the item map 360 and requests the query engine
80 to populate the attribute for description in the item data
object 364.

The query engine 80 is shown to include a receiving
module 370, a processing module 372, and a JDBC client
module 409. The receiving module 370 may receive the
request from the item data access object 362 including the
reference to the new item data object 364, the reference to
the item map 360, the request to find the item data object 364
by the primary key and the request to populate only the
description in the item data object 364. The processing
module 372 may utilize the request to find the appropriate
query template that may be utilized to generate query
statement 427 with appropriate content (i.e. the combination
of columns 53 to be selected or updated, appropriate driver
bind position markers within the statement, appropriate
query language constructs like IN, JOIN, etc., and other
content) that may include runtime information or values
from a number of different sources. In addition, the process-
ing module 372 may utilize the DDR module 78 to identify
the specific physical table name to be stored into the query

US 9,448,944 B2

17

statement based on the query template and the physical
database for the query to be executed against. In certain
embodiments, the processing module 372 may execute the
final composed query statement 427 by communicating
through a JDBC client module 409 (e.g., JDBC driver) that,
in turn, communicates with a JDBC server module 419 on
the database server 64. Finally the processing module
receives the results from the database server 64, and popu-
lates the item data object 364 with the results.

FIG. 17 is a block diagram illustrating exemplary soft-
ware components in the query engine 80, according to one
embodiment. The software components include a receiving
module 370, a processing module 372, get value routines
385 including a get logical table routine 387, a get select
fields routine 393, a get update fields routine 405, a get insert
fields routine 407, a get attribute value routine 389, a get
hash value routine 391, a get tables value routine 397, a get
join value routine 399, a get “IN clause” routine 401, and a
get “ORSET clauses” routine 403. The receiving module
370 may be utilized to receive a request from the item data
access object 362 that, in turn, is servicing the request from
the application domain 18. The request may implicitly
specify the type of query operation (e.g., SELECT,
UPDATE, INSERT, DELETE, PL/SQL, etc.). The request
for a SELECT query operation may also include selection
criteria to find a specific object (e.g., primary key or sec-
ondary key) or selection criteria to find all objects matching
selection criteria (e.g., all items that are listed for sale by
John Doe). The processing module 372 may select a pre-
defined query template based on the request, parse the query
template for place holders, and/or use a cache version of the
parsed query template, invoke the get value routines 385
listed above and/or the DDR module 78 based on the place
holders in the query template, generate a query statement
427 based on the query template, query the data base based
on the generated query statement 427, receive the results
and, populate the results to the data object(s) 20.

FIG. 18A is a block diagram illustrating various compo-
nents of an exemplary map object 76, according to one
embodiment. The map object 76 is illustrated as including
field mapping 224, table joins 222, read sets 228, update sets
230, default DDR hints 375, select queries 376, update
queries 378, insert queries 380, delete queries 382, PL/SQL
queries 381 and other meta-data. The methods and meta-data
included in the map object 76 may be dedicated to providing
services for a specific type of data object 20 (e.g., an
exemplary item data object).

FIG. 18B is a block diagram illustrating various further
exemplary components of the map object 76, according to
one embodiment. The field mappings 224 include a defini-
tion for each attribute 34 in the corresponding data object 20.
Each attribute may be defined as utilizing full field mapping
246, hint field mapping 248, hashhint field mapping 250,
contained object field mapping 252, and subobject field
mapping 254. The full field mapping 246 may be used to
associate an attribute on a data object with a corresponding
column 53 in a database table for use by the query template
system. To this end the full field mapping 246 is associated
with a full field name 247, an attribute name 256, a logical
table name 240, and a field name 52 (e.g., a column 53 in a
table). Further, the attribute name 256 may appear in a query
template as prefixed with “:” (e.g., :m_attribute name) and
when used in this manner may function as a place holder for
the corresponding value from the data object 20. It will
however be appreciated that different prefixes can be used in
different embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

18

The hint field mapping 248 may be used to identify an
attribute that that may be used to pass a hint to the DDR
module 78 and/or to be included in a generated query
statement. The hint field mapping 246 includes, for example,
a hint name 249 and an attribute name 256. Further the
attribute name 256 may appear in a query template as
described above and function as described above.

The hashhint field mapping 250 may be used to identify
an attribute 34 that is associated with a data object 20
through a general hash table of name/value pairs. The
hashhint may be used to pass a hint to the DDR module 78
and/or to be included in a generated query statement based
on the query template. Hashhint field mapping 250 includes,
for example, a hashhint name 251 and an attribute name 256.
Further, the attribute name 256 may appear in a query
template as prefixed with “:+” (e.g., :+m_attribute name)
and when used in this manner may function as a place holder
for the corresponding value in the data object 20 hash table.
It will however be appreciated that different prefixes can be
used in different embodiments.

The contain field mapping 252 may be used to identify an
attribute that is a reference to a data object 20 that is
contained by the parent object and can be have its data
retrieved in the same SQL as the parent object. The contain
field mapping 252 includes, for example, a contained name
253, an attribute name 256, a map class name 221, an object
class name 223 of the contained subobject, and an attribute
type 229 which is the external type for the contained
subobject (e.g. DOI). Further, the attribute name 256 of the
contained sub-data object may appear in a query template as
prefixed with “:”, followed by the attribute name of the
contained sub-object in the parent object, followed by a “.”,
and then the attribute name inside the contained sub-data
object (e.g., :m_containedSubObject.m_attribute name) and
when used in this manner may function as a place holder for
the corresponding value in the contained sub-data object 20.

The subobject field mapping 254 includes a subobject
name 255 that may be utilized to generate an attribute name
256. The subobject field mapping 254 includes attributes for
a non-contained subobject. The subobject field mapping 254
includes a foreign key attribute name 227 from the subobject
(e.g., currencylD) that may be used to set a foreign key value
onto a containing parent’s foreign key attribute (e.g. billing
currency) for the subobject, when a subobject is assembled
onto a parent object (e.g. setting a currency object onto a
user object as its billing currency, the value of the currency
ID of the currency object is copied to the user object’s
billing currency ID attribute).

The table joins 222 may be utilized to associate a pair of
logical tables with a snippet of SQL that may be utilized in
an SQL join (reading two physical tables with a single SQL
statement by identifying a column 53 that is shared by both
tables). One or more table joins 222 may be defined and each
table join 222 includes an SQL join snippet 244 (e.g., a
fragment of an SQL statement) and two logical table names
240. The SQL join snippet 244 may be included in a query
statement 427 based on a query template and the logical
table names 240 that are determined to be involved in the
particular instance of the query statement 427 being com-
posed.

The read sets 228 may be used to identify a group of
attributes 34 in the data object 20 that may be requested by
the application domain 18 to be substituted into a query
statement based on a query template that includes a place
holder (e.g. <SELECTFIELDS>). In addition, the group of
attributes 34 may subsequently be populated onto the data
object from the resulting result set. Each read set 228 may

US 9,448,944 B2

19

include a read set name 262 and may identify one or more
attributes 34. For example, the read set name 262 “READ
SET_FULL” may be associated with all attribute 34 in the
data object 20 and the read set name “READ SET_
MINIUM” may be associated with a few attributes 34 in the
data object 20.

The update sets 230 may be used to identify a group of
attributes in the data object 20 that may be requested by the
application domain 18 to be updated to the database 24. The
set of fields in the chosen update set will be included in a
query statement 427 based on the placement of a place
holder (e.g. <UPDATEFIELDS>), with the appropriate
query language syntax (ex. set a.userld=?, a.email=?) in the
query statement 427. Each update set 230 may include an
update set name 258 that identifies one or more member
attributes 34. For example, the update set name “UPDATE
SET_FULL” may be associated with all of the attributes 34
of the data object 20 and the update set name “UPDATE
SET_MINIUM” may be associated with only a few attri-
butes 34 of the data object 20.

The DDR hint sets 375 may identify the attributes 34 that
may be utilized as hints in the absence of hints being
overridden with override hints 377. Each DDR hint set 375
identifies a number of attributes 34 that utilize the full field
mapping 246, hashhint field mapping 250 or hint field
mapping 248. The results of utilizing these hints to deter-
mine the physical table name involved in the query will be
included in the query statement 427 based on the place
holders for these table names that appear in the query
template.

Returning to FIG. 18A, the query name 215 in the map
object 76 may be utilized to identify a set of query template
structures 383. For example, the query name 215 “Find-
BYTK” may be utilized by the query engine 80 to identify
a set of query template structures 383 that may be utilized to
select data with a primary key (PK). As another example, the
query name 215 “FindAlIBYAltKey may be utilized by the
query engine 80 to identity a set of query template structures
383 that may be utilized to select data with an alternate key
(AltKey).

The select query template structure 383 includes a read set
name 262 and a query template 384. The read set name 262
in the query template structure 383 may be utilized by the
query engine 80 to identify a specific query template or set
of query templates to be performed in order as a group. The
query template 384 includes query tokens 386 that may be
characterized as static or dynamic. A static query token 386
may include SQL language that may not change (e.g.,
executed as it appears in the query template 384). The
dynamic query token 386 may include a place holder (e.g.,
generalized or specialized) that may be used to identify and
mark the position where content is to be included in the
query statement 427 (e.g. column names, column values,
driver bind markers for binding parameters, etc.) based on
the read set and other information provided in the request.

The update queries 378, insert queries 380, delete queries
382, and PL/SQL queries 381 have structures that are
substantially similar to the select queries 376. Special note
may be made with regard to the update query 378. The query
engine 80 may automatically select the query template 384
or set of query templates for an update query 378 based on
identifying an update set 230 that most closely matches the
modified (e.g., dirty) and/or loaded attributes 34 of the data
object 20 without excluding any of the modified attributes
34. For example, a data object 20 with dirty attributes 34 A
and B may most closely match an update set 230 that
includes attributes 34 A, B and C and not an update set 230

20

25

30

35

40

45

20

that includes an attribute 34 A. Accordingly, the query
engine 80 may select a matching update set 230 and the
associated query template 384 to update the database (e.g.,
including A, B, and C). In this manner the database 24 may
be updated consistently according to any one of a number of
predefined update sets 230.

FIG. 19 contains examples of generalized place holders
390 that may be used throughout different types of queries,
according to one embodiment. The generalized place hold-
ers 390 include a logical table place holder 392, an attribute
place holder 394, and a hash place holder 396. The logical
table place holder 392 may be utilized as a place holder in
a query template 384 that may be utilized to generate a query
statement 427 that includes a runtime determined physical
table name. The logical table place holder 392 includes the
logical table name 240 prefixed by “:_T_”. The DDR
module 78 may be utilized to resolve a logical table name
into a physical table name.

The attribute place holder 394 may be utilized as a place
holder in a query template 384 for an attribute 34 value from
a prototype data object 20. The attribute place holder 394
identifies the attribute 34 value in the prototype data object
20. The attribute place holder 394 may be included in the
query template that may be utilized to generate a query
statement 427 with the attribute 34 value. The attribute place
holder 394 includes the attribute name 256 prefixed by
“:m_". The get attribute value routine 389 may be utilized to
execute the proper logic to obtain the attribute 34 value from
the prototype data object 20.

The hashhint place holder 396 may be utilized as a place
holder in a query template 384 for a hint value that is passed
via a hash table that is associated with the prototype data
object 20. The hashhint place holder 396 includes the
attribute name 256 prefixed by “:+m_". The get hash value
routine 391 may be utilized to execute the appropriate logic
to obtain the hint value from the prototype data object 20.

FIG. 20 contains examples of potential select query
template specialized place holders 398, according to one
embodiment. The specialized select query template place
holders 398 may include a select fields place holder 400, a
tables place holder 402, and a join place holder 404. The
select fields place holder 400 may be utilized as a place
holder in a select query template 384 for field names 52
based on the chosen read set (e.g., a column 53 in an
exemplary table 32—see FIG. 2). The get select fields
routine 393 may utilize a read set 228 that was specified to
the query engine 80 to determine the field names 52 that
should be included in the query statement that is generated
based on the query template 384.

The tables place holder 402 may be utilized as a place
holder in a select query template 384 for the substitution of
physical table names. The get tables value routine 397 may
utilize a read set 228 that was specified to the query engine
80 to determine logical table names 240 that are involved in
the query, based on the columns 53 specified in the read set.
The DDR module 78 may utilize the logical table names 240
and hints to determine the corresponding physical table
names that may be included in the query statement 427 that
is generated based on the query template 384. The example
illustrates two physical table names (e.g. User and Group).

The join place holder 404 may be utilized as a place
holder in a select query template 384 for an SQL join snippet
244. The get join value routine 399 determines if more than
one logical table name 240 is required based on the read set
228 that is specified to the query engine 80. If more than one
logical table name 240 is required, the get join value routine
399 determines the proper SQL join snippet 244 by match-

US 9,448,944 B2

21

ing the logical table names associated to the read set 228
with the logical table names 240 in the table joins 222 in the
map object 76. The matched table join 222 includes the
proper SQL join snippet 244.

FIG. 21 contains examples of specialized selection crite-
ria place holders 406, according to one embodiment. The
specialized selection criteria place holders 406 include an
“IN” place holder 408 and an “ORSET” place holder 410.
The “IN” place holder 408 may be utilized as a place holder
in a query template 384 to generate a query statement 427
the includes an SQL IN clause that utilizes a common
column name and a set of bound values retrieved from a set
of prototype data objects 20. For example, the data access
object 68 may pass multiple prototype data objects (e.g.,
users) 20 to the query engine 80. The prototype data objects
20 may include an attribute 34 (e.g., users name) that may
be utilized in the query template 384 as criteria to select a
row from a table in the database 24. The IN place holder may
be utilized during runtime to generate a query statement 427
with SQL that uses an IN clause that is utilized to bind the
selection value from each prototype data object into the EN
clause set (e.g., where “User.name” in the table “user”
matches the value in the attribute name 256 for the respec-
tive prototype data objects 20, the SQL would be WHERE
User.name IN (?,7,?), where the values from three prototype
data objects would be bound to these three driver bind
positions). The get value routine 389 is utilized to execute
the proper getter for the attribute 34 for the multiple data
objects 20.

The “ORSET” place holder 410 may be utilized as a place
holder to identify where multiple columns 53 are used in the
selection criteria and a set of values for these columns 53 is
provided through multiple prototype data objects containing
the corresponding attributes for these columns 53 (example
SQL would be: WHERE (User.city=? AND User.zip=?) OR
(User.city=? AND User.zip=?) OR . . .) Otherwise the
“ORSET” place holder 410 may operate in substantially the
same manner as the “IN” place holder 408. The get attribute
value routine 389 is utilized to execute the proper logic for
obtaining attribute 34 values.

FIG. 22 contains examples of specialized place holders
411 for update query templates, insert query templates, and
callable statement or PL/SQL query templates, according to
one embodiment. The specialized place holders 411 include
an update fields place holder 413, an insert fields place
holder 415, and callable statement output parameter place
holder 417. The update fields place holder 413 may be
utilized as a place holder in an update query template 384
that may be utilized to generate a query statement 427 that
includes the appropriate field names 52 (e.g., columns 53 in
table) and driver bind positions (or the actual direct values)
in the proper SQL syntax based on the update set chosen.
The get update fields routine 405 may utilize an update set
230 that was specified to the query engine 80 or automati-
cally selected by the query engine 80 to determine the field
names 52 that are included in the query statement 427 and
their associated prototype data object attribute values that
are bound to the query statement 427.

The insert, fields place holder 415 may be utilized as a
place holder in an insert query template 384 that may be
used to generate a query statement 427 that includes the
appropriate field names 52 (e.g., columns in table) and driver
bind positions (or the actual direct values) in the proper SQL
syntax. The get insert fields routine 407 utilizes an update set
230, or if specified an insert set, that was specified to the
query engine 80 to determine the field names 52 that are

10

15

20

25

30

35

40

45

50

55

60

65

22

included in the query statement 427 and their associated
prototype data object attribute values that are bound to the
statement.

The callable statement return variable place holder 417
may be utilized as a place holder in callable statement query
template 384 to identify a return variable in the PL/SQL and
associate it with an attribute or hashhint attribute on the
prototype data object that the response value will be
assigned to. In one embodiment a prefix of “:_OUT_" is
used to identify this type of place holder. This may be used
to obtain an id assigned to a record automatically in the
database during an insert operation, so that it can be assigned
to the object for identity. PL/SQL query templates can utilize
a mix of query template types with their associated place
holders.

FIG. 23A is flow a chart illustrating a method 412,
according to one exemplary embodiment, to automatically
generate query language in software. The method 412 com-
mences at operation 414 with a client in the application
domain 18 communicating a request to a data access object
68 for a data object 20 for an item. The client passes a
primary key for the data object 20 (e.g., id) and requests the
data access object 68 to populate all the attributes 34 in the
data object 20 (e.g., id, type, and description attributes). In
response, the data access object 68 gets a new data object 20,
calls a setter method to initialize the id attribute on the data
object 20 (e.g., prototype data object) with the primary key
value and communicates the request to the receiving module
370 in the query engine 80. The calling arguments 374
further include a reference to the map object 76 for the item,
a reference to the data object 20 for the item, a query name
215, and a read set name 262 to fully populate the data object
20.

At operation 416, the processing module 372 associates a
query template 384 for a select query with the request by
indexing into the select queries 376 in the map object 76
based on the query name 215 and indexing into the query
structures 383 based on the read set 228. Thereafter, at
operation 418, the processing module 372 parses the place
holders in the query template 384, receives content from
various sources (e.g., get value routines and/or a DDR
module 78) and generates a query statement with the content
based on the query template 384.

FIG. 24 is flow chart illustrating exemplary detail of the
operation 418, according to one embodiment. At operation
420, the processing module 372 gets a query token 386 from
the query template 384 and, at decision operation 422, the
processing module 372 determines if the query token 386 is
a place holder. If the query token 386 is a place holder,
processing continues at operation 424. Otherwise processing
continues at operation 423.

At operation 423, the processing module writes the static
query token 386 into the query statement.

At operation 424, the processing module 372 receives
content from a source (e.g., get value routines 385, etc.) and
writes the content into the query statement. The source may
be identified with the place holder and passed the necessary
information (e.g. read set field mappings, query type, etc.)
for the source to emit its portion of the query statement 427.

FIG. 25A illustrates an exemplary query template 426,
according to an embodiment and FIG. 25B illustrates and an
exemplary query statement 427, according to one embodi-
ment. The query template 426 includes place holders 425
and the exemplary query statement 427 shows the resulting
SQL with the content. The query template 384 and the query
statement 427 may be presented to provide an overview of
query generation which also includes the appropriate bind-

US 9,448,944 B2

23

ing of actual values to the driver specified bind positions
(e.g. “?”) after the query statement 427 is generated.

FIG. 26A illustrates an exemplary method 428, in accor-
dance with the invention, to process a select fields place
holder 400 and FIG. 26B shows an exemplary method 430,
also in accordance with the invention, to process a table
place holder 402. The method 428 commences at operation
430 with the processing module 372 parsing the select fields
place holder 400 in the query template 384. At operation 431
the processing module 372 requests a get read set select
fields routine 393 to get content for the select fields place
holder 400.

At operation 432 the get read set select fields routine 393
gets the read set 228 that was passed to the query engine 80
and at operation 434 utilizes the read set 228 to find the
corresponding field names 52 (e.g., column names) for each
of attributes 34 in the read set 228.

At operation 436 the get select fields routine 393 utilizes
the read set 228 that was passed to the query engine 80. The
get select fields routine 393 utilizes the read set 228 to find
the corresponding logical table names 240 for each of the
attributes 34 in the read set 228. At operation 435, the get
select fields routine 393 communicates the field names 52
and logical table names 240 to the processing module 372.

At operation 437 the processing module 372 receives and
writes the table names 240 and the field name 52 pairs (e.g.,
“logical table name.field name” into the query statement 427
based on the position of the select fields place holder 400 in
the query template 384.

The method 430 commences at operation 438 with the
processing module 372 parsing the tables place holder 402
in the query template 384. At operation 439 the processing
module 372 requests a get tables value routine 397 to get a
value for the tables place holder 402.

At operation 440 the get tables value routine 397 gets the
read set 228 that was passed to the query engine 80 and at
operation 441 utilizes the read set 228 to find the corre-
sponding logical table names 240 for each of the attributes
34 in the read set 228. At operation 441, the get tables value
routine 397 communicates the logical table names 240 to the
processing module 372 (e.g., a logical table name 240 is
communicated once regardless of the number of appear-
ances identified via the read set 228).

At operation 443 the processing module 372 receives and
writes the logical table names 240 into the query statement
427 based on the position of the tables place holder 402 in
the query template 384.

FIG. 26C illustrates a method 442, in accordance with the
invention, to process an attribute place holder 394 and FIG.
26D illustrates an exemplary method 444, also in accor-
dance with the invention, to process a join place holder 404.
The method 442 commences at operation 446 with the
processing module 372 parsing the attribute place holder
394 in the query template 384. At operation 448 the pro-
cessing module 372 communicates a request to a get attri-
bute value routine 389 to get a value for the attribute place
holder 394.

At operation 445 the get attribute value routine 389
executes the getter method on the prototype data object 20
for the attribute 34. At operation 447, the attribute value
routine 389 communicates the attribute 34 value to the
processing module 372.

At operation 449 the processing module 372 receives and
writes the attribute value into the query statement 427 or
writes a driver bind marker into the query statement based
on the position of the attribute place holder 394 in the query
template 384.

10

15

20

25

30

35

40

45

50

55

60

24

The method 444 commences at operation 448 with the
processing module 372 parsing the join place holder 404 in
the query template 384. At operation 448, the processing
module 372 communicates a request to a get join value
routine 399 to get values for the join place holder 404.

At operation 450 the get join value routine 399 gets the
read set 228 that was passed to the query engine 80 and at
operation 451 utilizes the read set 228 to find the corre-
sponding logical table names 240 for each of the attributes
34 in the read set 228.

At decision operation 451 the get join value routine 399
determines if more than one logical table name 240 appears
in the read set 228. If more than one logical table name 240
appears in the read set 228 then processing continues at
operation 452. Otherwise processing continues at operation
at operation 453.

At operation 452, the get join value routine 399 utilizes
the map object 76 for the data object 20 to read table joins
222. The get join value routine 399 attempts to match the
logical table names 240 identified with the read set 228 with
logical table names 240 in a particular table join 222. If a
match is found the get join value routine 399 gets the
corresponding SQL join snippet 244 (e.g., SQL join lan-
guage) from the table join 222.

At operation 453, the get join value routine 399 gets a null
entry.

At operation 454, the get join value routine 399 commu-
nicates the results to the (processing module 372.

At operation 455 the processing module 372 receives and
writes the results (e.g., SQL join snippet 244 or null entry)
into the query statement 384 based on the position of the
tables place holder 402 in the query template 384.

Returning to FIG. 24, at decision operation 456, the
processing module 372 determines if additional query
tokens 386 needs to be processed. If an additional query
tokens 386 needs to be processed then processing continues
at operation 420. Otherwise processing continues at opera-
tion 458.

At operation 458 the processing module 372 invokes the
DDR module 78 with the logical table names 240 that have
been previously written into the query statement 427 and the
appropriate hint(s). In response, the DDR module 78 may
return a physical table 502 and a database server 64 (e.g.,
database server 64).

At operation 464, the processing module 372 writes the
physical table 502 in place of corresponding the logical table
name(s) 240 in the query statement 427.

Returning to FIG. 23A, at operation 466, the processing
module 372 queries the database server 64 and receives
results.

FIG. 23B is an interactive flow chart illustrating a method
466, according to one embodiment, to query a database and
receive results. Illustrated on the left may be the query
engine 80 which is shown to include the processing module
372 and a JDBC client module 409 (e.g., JDBC driver).
Ilustrated on the right may be the database server 64 which
is shown to include a JDBC server module 419. The method
466 commences at operation 429 with the processing mod-
ule 372 communicating the query statement to the JDBC
client module 409 and requesting the JDBC client module
409 to prepare the query statement 422.

At operation 433, the JDBC client module 409 parses the
query statement 422, caches the query statement 422 and
creates a statement object for subsequent execution of the
query statement 422. For example, the statement object may
include setter routines to set the values for bind positions or
bind markers that appear in the query statement 422. Illus-

US 9,448,944 B2

25

trated below is the query statement 422 that includes content
in the form of a binder marker, “?”, that corresponds to an
attribute 34 (e.g., A.id) that may be associated with a value
(e.g., 123) that may be set with the above described setter
routine.

SELECT A.id, A.type, B.Desc
FROM items a, itemdesc b
WHERE A.id = ? and (A.ID = B.ID)

At operation 457, the IDBC client module 457 commu-
nications a reference to the statement object to the process-
ing, module 372.

At operation 459, the processing module 372 receives the
reference to the statement object and at operation 461 the
processing module 372 binds a value to the binder maker by
invoking the setter routine that sets the value of the attribute
34 (e.g., A.id). It will be appreciated that other embodiments
may include multiple binder markers in a single query
statement 422.

At operation 463 the JDBC client module 409 receives the
value and communicates the bound query statement 422 to
the JDBC server module 419 at the database server 64.

At operation 465, the JDBC server module 419, at the
database server 64 receives and processes the query state-
ment 422. At operation 469, the JDBC server module
responds by communicating results to the JDBC client
module (e.g., operation 471) that, in turn, communicates the
results to processing module 372 that, in turn, populates the
results (e.g., A.id, A.type, B.Desc) to the item data object 20.
Finally, the processing module 372 returns control to the
item data access object 362 that, in turn, responds to the
application domain 18.

Thus, a method and system for dynamic templatized
query language in software has been described. Although the
invention has been described with reference to specific
exemplary embodiments, it will be evident that various
modifications and changes may be made to these embodi-
ments without departing from the broader spirit and scope of
the invention. Accordingly, the specification and drawings
are to be regarded in an illustrative rather than a restrictive
sense.

FIG. 27 is a block diagram illustrating exemplary inter-
actions between hardware and software components of a
data access system 500, according to one embodiment. The
system 500 corresponds to the data access system 10 and,
accordingly, the same or similar references have been used
to indicate the same or similar features unless otherwise
indicated. Broadly, the data access system 500 includes a
data access layer 14 that includes software components that
receive a single request for data from an application domain
18, queries multiple data sources in the exemplary form of
database servers 64 in a persistent layer 16, and responds to
the application domain 18 with the requested data. The data
access layer 14 includes an item map 504, an item data
access object 506, an item data object 508, a query engine
80, and a DDR module 68. The query engine 80 is shown to
include a communication module 510 and a query module
512. Other embodiments of the system 500 may include a
business layer between the application domain 18 and the
data access layer 14. The persistent layer 16 is shown to
include three database servers 64 that each of which include
a physical table 502 that persistently stores data of the same
schema, but not necessarily the same actual records.

The item data access object 506 is shown to receive a
request for an item data object 508 from the application

10

20

40

45

55

26

domain 18. The request may include search criteria to locate
one or more item data objects 508 and an indication of
attributes in the item data objects 508 that should be popu-
lated. For example, the item data access object 506 may
receive a seller’s name, e.g., Joe, which may be used to
locate items in the databases 24 that are sold by Joe and an
indication that the “item description” should be populated
for the items found. In response, the item data access object
506 gets a new item data object 508, initializes the item data
object 508 with the name “Joe” (e.g., prototype item data
object), gets a reference to the item map 504, and requests
the query engine 80 to perform the query that finds items by
seller name to all possible sources of item data for the seller
name “Joe”.

The query engine 80 is shown to include a communication
module 510 and a query module 512. The communication
module 510 may receive the request from the item data
access object 508. The query module 512 may utilize the
map object 76 to associate the “item description™ attribute
with a logical table name that identifies a logical table
associated with the requested data. In addition, the query
module 512 may pass the logical table name to the DDR
module 68, and a hint indicating to find all sources of item
data. The DDR module 68 responds by returning an array of
physical tables and database server pairs (e.g., touples) that
correspond to the logical table name. The query module 512
is shown to query three database servers 64 that respectively
return results. The query module 512 then processes the
results by creating an item data object 508 for each item
returned (e.g., items sold by Joe) and populating an “item
description” to the respective item data objects 508 before
returning control to the item data access object 506. There-
after, the item data access object 506 responds to the
application domain 18 that the request for data has been
serviced.

It will be appreciated that the system 500 utilizes the item
map 504, the item data access object 506 and the item data
object 508 to process a specific type of object (e.g., an item);
however, in other embodiments other types of objects (e.g.,
user, buildings, cars, etc.) may be utilized, and other embodi-
ments of data access layer constructs may be used.

FIG. 28 is a block diagram illustrating software compo-
nents including an exemplary query engine 80, an exem-
plary DDR module 68, and an exemplary map object 76,
according to one embodiment. The query engine 80 includes
a communication module 510 and a query module 512. The
communication module 510 may be utilized to receive a
request from the data access object 68 that is servicing the
application domain 18. The request may specify a selection
criteria to find a specific object (e.g., primary key or sec-
ondary key) or selection criteria to find all objects matching
selection criteria (e.g., all items that are listed for sale by
Joe). In addition, the request may specify a query name and
a set of attributes (e.g., read set) to be populated to the data
object 20. The query module 510 may select a query
template based on the request, utilize the read set to identify
logical table names, utilize the DDR module 68 to get arrays
of touples, communicate queries to the data base servers 64,
receive results from the data base servers 64, create data
objects 20, populate data objects 20, and build and execute
fetch levels.

The item map 504 is illustrated as including field mapping
224, read sets 228, default DDR hints 375, select queries
376, and other meta-data. The methods and meta-data
included in the item map object 76 may be dedicated to
provide services with regard to a specific type of object (e.g.,
an item object). The field mappings 224 include a definition

US 9,448,944 B2

27

for each attribute 34 in the corresponding item data object
508, some of which may be defined as utilizing a full field
mapping 246. The full field mapping 246 may be used to
identify an attribute 34 that is utilized to store data persis-
tently in a table column 53. To this end, the full field
mapping 246 may be associated with a full field name 247,
an attribute name 256, a logical table name 240, and a field
name 52 (e.g., a column 53 in a table—see FIG. 2).

The read sets 228 may be used to identify a group of
attributes 34 in the item data object 508 that may be
requested by the application domain 18 to be populated.
Each read set 228 may include a read set name 262 and may
identify one or more attributes 34.

The default DDR hints 375 may identify the attributes 34
that may be utilized to pass hints to the DDR module 68 in
the absence being overridden with override hints 377 that
may be associated with a specific set of queries. Each default
DDR hint 375 may identify a number of attributes 34 that
may be utilized to pass a hint.

The select queries 376 may be utilized to read or SELECT
(e.g., utilizing SQL) data from the database 24. Each select
query 376 may include a query name 215, override DDR
hints 377, and an array of query structures 383.

The query name 215 in the map object 76 may be utilized
to identify a set of query structures 383. The override DDR
hints 377 may be utilized to override the default DDR hints
375 with regard to a specific set of query structures 383.

The query structure 383 includes a read set name 262 and
a query template 384. The read set name 262 in the query
structure 383 may be utilized by the query engine 80 to
identify a specific query template 384.

The DDR module 68 may be utilized to resolve the
physical location of data on the database servers 64 based on
a logical table name and one or more hints. For example, the
DDR module 68 may receive a hint and a logical table name
270 and respond by returning an array of physical tables and
database server 64 pairs (e.g., touples).

FIG. 29 is a block diagram illustrating exemplary repre-
sentations of data 514, according to one embodiment. The
exemplary representations of data 514 may include a table
representation 515, an archive representation, and an alter-
nate archive representation 519. The table representation
517 includes a table 32 that includes rows 50 (e.g., corre-
sponding to data objects 20) and columns 53 (e.g., corre-
sponding to attributes 34) the intersection of which may be
utilized to store attribute 34 values (e.g. data 22). The table
32 may be represented within the data access layer 14 as a
logical table 516. The logical table 516 may be identified
with a logical table name 270 and mapped by the DDR
module 68 to one or more physical tables 518 that are
utilized to store the data 22 on one or more database servers
64. The data access layer 14 may utilize the logical table
name 240 as a mechanism to decouple and abstract the
physical location of the data 22. For example, the logical
table name 270 associated with the logical table 516 the may
be utilized to abstracts or hide the physical location of the
data 22 which is illustrated as stored in three physical tables
518 that are located on two database servers 64.

The archive representation 517 includes a logical table
516 which may be associated with a logical table name 270,
“Items Sold”, which may be associated with three physical
tables 518 that are respectively named, “Items Sold”.

The alternate archive representation 519 includes a logical
table 516 which may be associated with the same logical
table name 270, “Items Sold”, which may be associated with
three physical tables 518 that are respectively named, “Items
Sold 20027, “Items Sold 2003, and “Items Sold 2004.”

10

15

20

25

30

35

40

45

50

55

60

65

28

FIG. 30 is a block diagram illustrating exemplary request
types 516, according to one embodiment, for requesting
data. The request types 521 include a full scan 520, a look
back scan 522, a key scan 524 and a mixed scan 526. The
full scan 520 may be utilized to find all rows 50 in a logical
table 516 with data in a column 53 that matches a criterion.
Accordingly, the DDR module 68 may return an array of one
or more touples 528 that provide the physical location of the
data for the entire logical table 516. For example, the
application domain 18 may request all items that are for sale
by “Joe”.

The look back scan 522 may be utilized to find the first
row 50 within a specific range of a logical table 516 that
matches a criterion. Accordingly, the DDR module 68 may
return an array of one or more touples 528 that correspond
to a range of the logical table 516 based on hints provided
indicating a desired range. For example, the application
domain 18 may request to look back five years from the
present time for a row for a seller “Joe” in a logical table
(e.g., an archive) that imps to physical tables 518 that
correspond to years. Another example may include looking
back over a specific range of years (e.g., 1999 to 2001).

The key scan 524 may be utilized to find a singe row 50
in the logical table 516 based on a matching key value. The
key value may uniquely identify the row 50 in the logical
table 516.

The mixed scan 526 may be utilized to find multiple rows
50 in the logical table 516 based on matching key values. For
example, the application domain 18 may request the rows
for the ID’s “Larry”, “Moe” and “Curly” in a single request.
Accordingly, the DDR module 68 may be invoked for each
ID 50 to determine the associated touple. Keys with the
same touple may be combined into IN clause statements to
reduce the number of requests to a particular database for a
set of keys provided to the QueryEngine for a query.

The above described request types 521 may also be
considered with respect to the replication of data. For
example, the persistent layer 16 may be utilized to store the
same data on multiple data base servers 64. Accordingly, the
DDR module 68 may return multiple touples 528 for the
same data thereby providing for the retrieval of data from
alternative data base servers 64 in the event that a data base
server 64 may be unavailable (e.g., marked down by opera-
tions or malfunctioning). With regard to the full scan 520,
look back scan 522, or key scan 524 the method for
searching backup data base servers 64 may be straight
forward. For example, if the query module 512 cannot read
the data at one touple 528 then the query module 512 may
request the same data from touples that identify backup
database servers 64 until the data is found. In the case of the
mixed scan 526 the method for searching need not be
straight forward because the rows 50 may be clustered on the
same touples 528. For example, consider the following:

Row/Object Touples

Larry DDR modules returns Touple A, Touple B
Moe DDR module returns Touple B, Touple C
Curly DDR module returns Touple A, Touple B

In the above example, “Larry” and “Curly” are both on
Touple A. Executing a query to retrieve “Larry” from Touple
A without retrieving “Curly” from touple A may be consid-
ered inefficient because SQL provides for retrieving multiple
rows with a single query. For example:

US 9,448,944 B2

29
SELECT id FROM User WHERE User.id IN (‘Larry’,
‘Curly”)

In view of the above, optimizing a search for the mixed
scan 526 may require invoking the DDR module 68 for each
row 50 and utilizing the returned touples 528 to build fetch
levels as follows:

Fetch
Level Touple SQL Statement

1 1 SELECT id FROM Touple A WHERE User.id IN
(Larry, Curly)
2 SELECT id FROM Touple B WHERE User.id IN (Moe)
2 2 SELECT id FROM Touple B WHERE User.id IN
(Larry, Curly)

3 SELECT id FROM Touple C WHERE User.id IN (Moe)

The above fetch levels may be executed in ascending
order. After the first query is executed (e.g., Fetch Level 1,
Touple A) the result data may be matched against data values
(e.g., “Larry,” “Curly”) that may be stored in appropriate
attributes 34 in respective data objects 20. If a match is
found, the data object 20 may be marked as found and the
name removed from subsequent queries. If all the queries in
a fetch level are executed and data objects 20 remain
unfound, the next fetch level may be executed to find the
remaining data objects 20.

FIG. 31 is a flow chart illustrating an exemplary method
580, in accordance with an embodiment, to respond to a
request for data. At operation 582, the communication
module 510 receives a request from an item data access
object 506. The request may be for all items offered for sale
by the seller, “Joe”, and may indicate that all attributes 34 in
the item data objects 508 may be populated (e.g., full read
set 228). Further, the request may indicate a query name 215,
a reference to the item map 504 and a reference to the item
data object 508 that includes an attribute set to “Joe”.

At operation 584, the query module 512 queries database
servers 64, receives results and populates item data objects
508.

FIG. 32 is a flow chart illustrating an exemplary method
584, in accordance with an embodiment, to query data
sources, receive results, and populate objects. At operation
586, the query module 512 gets touples 528 from the DDR
module 68.

FIG. 33A is a flow chart illustrating an exemplary method
586, in accordance with an embodiment, to get touples. The
method 586 commences at operation 590 with the query
module 512 utilizing the full read set that was passed to the
query engine 80 to identify the logical table name 270
associated with the item data object 508. It will be appre-
ciated that different logical table names 270 may be specified
for each attribute 34 in the item data object 508; however,
the present embodiment illustrates a single logical table
name 270 for all attributes 34 in the item data object 508.

At operation 592 the query module 512 gets the default
ddr hints 375 from the map object 76; however, other
embodiments may utilize override ddr hints 377. The ddr
hints 375 may indicate a full scan 520 or a specific hint may
be added by the query engine to the hints passed to the DDR
based on the method called on the query engine or a flag set
on the query engine.

At operation 594 the query module 512 invokes the DDR
68 with the logical table name 270 and the default ddr hints
375. The DDR module 68 responds with an array of touples
528 far the entire logical table 516.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

Returning to FIG. 32, at operation 588, the query module
512 processes a query by utilizing the query name 215 and
the full read set 228 to identify a query template 384.

FIG. 33B is an exemplary interactive flow chart illustrat-
ing an exemplary method 588, in accordance with an
embodiment, to process a query. Illustrated on the left of the
operation 588 may be the query engine 80 and illustrated on
the right of the operation 588 may be the database server.
The method 588 commences, at operation 596 with the
query module 512 generating a query based on the query
template and communicating the query to a database server
64.

At operation 598, the database server 64 receives the
query and at operation 600 communicates the results to the
query engine 80.

At operation 602, the query module 512, in the query
engine 80, receives the results.

Returning to FIG. 32, at decision operation 604 the query
module 512 determines if the results include the requested
data items offered for sale by “Joe™). If the results include
the requested data, processing continues at operation 606.
Otherwise processing continues at decision operation 607.

At operation 606, the query module 512 creates an item
data object 508 and populates the attributes 34 of the item
data object 508 with the results.

At operation 607, the query module 512 determines if the
results include more data. If the results include more data
then processing continues at decision operation 604. Other-
wise processing continues at decision operation 608.

At decision operation 608, the query module 512 deter-
mines if there are more touples 528 to process. If there are
more touples 528 to process then processing continues at
operation 588.

Returning to FIG. 31, at operation 610 the query module
512 responds to the item data access object 506 that pro-
cessing is complete and the data access object 506, in turn,
responds to the application domain 18.

The above embodiment illustrates a full scan 520 request
type. It will be appreciated that a look back scan 522
substantially resembles the above embodiment; however,
the took back scan may terminate responsive to finding the
first occurrence of the requested data. In addition, one
embodiment may utilize physical tables 518 that utilize an
archive representation 517 of the data and another embodi-
ment may utilize physical tables that utilize an alternate
archive representation 519 of the data.

FIG. 34 is a flow chart illustrating an exemplary method
612, in accordance with an embodiment, to respond to a
request for data. The method 612 commences with commu-
nication module 510 receiving a request from the data access
object 506. The request may be for three items including
their respective keys (e.g., 111, 222, 331.) Further, the
request may include an indication that all attributes 34 in the
respective data objects 20 should be populated (e.g., full
read set 228), a query name 215, a reference to an item map
504, and a reference to the three item data objects 508
respectively including the appropriate respective attributes
34 initialized to 111, 222, 333.

At operation 616, the query module 512 queries a data-
base server 64, receives results and populates item data
objects 508.

FIG. 35 is a flow chart illustrating an exemplary method
616, in accordance with an embodiment, to query databases,
receive results and populate objects.

At operation 586, the query module 512 gets an array of
touples 528 for a data item object 508 and saves the array of

US 9,448,944 B2

31

touples 528. For example, the following array of touples
may be returned on successive iterations of operation 586:

Row/Object Touples
111 DDR module returns Touple A, Touple B
222 DDR module returns Touple B, Touple C
333 DDR module returns Touple A, Touple B

At decision operation 620 the query module 512 deter-
mines if there are more data item objects 508 to process. If
there are more data item objects 508 to process then pro-
cessing continues at operation 586. Otherwise processing
continues at operation 622.

At operation 622 the query module 512 utilizes the arrays
of touples 528 to build fetch levels. For example, the
following fetch levels may be built:

Fetch

Level Touple SQL Statement

1 1 SELECT id FROM Touple A WHERE User.id = IN

(111, 333)

2 SELECT id FROM Touple B WHERE User.id = IN

(222)

SELECT id FROM Touple B WHERE User.id = IN

(111, 333)

3 SELECT id FROM Touple C WHERE User.id = IN
(222)

2 2

At operation 624 the query module 512 executes a query
in a fetch level.

At decision operation 626 the query module 512 deter-
mines if the results from the query include data 111, 222, or
333) that matches an attribute 34 value in one of the
requested item data objects 508. If data matches an attribute
34 value in one of the requested item data objects 508 then
processing continues at operation 628. Otherwise procession
continues at operation decision operation 630.

At operation 628 the item data object 508 is marked found
and the attributes in the item data object 508 are populated
with the results.

At decision operation 630, the query module 512 deter-
mines if there are more results. If there are more results then
processing continues at operation 626. Otherwise processing
continues at decision operation 632.

At decision operation 632, the query module 512 deter-
mines if there are more queries in the fetch level. If there are
more queries in the fetch level then processing continues at
operation 624. Otherwise processing continues at decision
operation 634.

At decision operation 634, the query module 512 deter-
mines if there are more fetch levels. If there are more fetch
levels then processing continues at operation 624. Otherwise
processing continues at operation 636 in FIG. 31.

Returning to FIG. 31, at operation 636 the query module
512 responds to the item data access object 506 that, in turn,
responds to the application domain 18.

Thus, broadly a method and system for transparent appli-
cation of multiple queries across multiple data sources
including different table names and database instances has
been described. This approach has the advantage of abstract-
ing or hiding from an application domain the complexities of
reading data from one or more physical tables that may be
stored on at least two data base servers. Further, the method
and system enhance the development of application software
by enabling a simplified view of the data as a single logical
table.

15

20

25

30

35

40

45

50

55

60

65

32

Exemplary Transaction Facility

FIG. 36 is block diagram illustrating an exemplary net-
work-based commerce system or facility 800 wherein the
present invention may be deployed. While an exemplary
embodiment of the present invention is described within the
context of the network-based commerce system 800, the
invention will find application in many different types of
computer-based, and network-based, facilities (commerce,
transaction or otherwise).

The network-based commerce system 800 includes one or
more of a number of types of front-end servers that may each
include at least one Dynamic Link Library (DDL) to provide
selected functionality. The system 800 may include page
servers 812 that deliver web pages (e.g., mark-up language
documents), picture servers 814 that dynamically deliver
images to be displayed within Web pages, listing servers 816
that facilitate category-based browsing of listings, search
servers 818 that handle search requests to the system 800
and facilitate keyword-based browsing of listings, and
ISAPI servers 820 that provide an intelligent interface to a
back-end of the system 800. The system 800 may also
include e-mail servers 822 that provide, inter alia, automated
e-mail communications to users of the network-based com-
merce system 800. In one embodiment, one or more admin-
istrative application functions 824 facilitate monitoring,
maintaining, and managing the system 800. One or more
API servers 826 may provide a set of API functions for
querying and writing to the network-based commerce sys-
tem 800. APIs may be called through the HTTP transport
protocol. In one embodiment, information is sent and
received using a standard XML data format. Applications
utilized to interact (e.g., upload transaction listings, review
transaction listings, manage transaction listings, etc.) with
the network-based commerce system 800 may be designed
to use the APIs. Such applications may be in an HTML form
or be a CGI program written in C++, Perl, Pascal, or any
other programming language.

The API servers 826, page servers 812, picture servers
814, ISAPI servers 820, search servers 818, e-mail servers
822 and a database engine server (e.g., provided by one or
more of the application servers 828) may individually, or in
combination, act as a communication engine to facilitate
communications between, for example, a client machine 830
and the network-based commerce system 800; act as a
transaction engine to facilitate transactions between, for
example, the client machine 830 and the network-based
commerce system 800; and act as a display engine to
facilitate the display of listings on, for example, the client
machine 830.

The back-end servers may include a database engine
server, a search index server and a credit card database
server, each of which maintains and facilitates access to a
respective database.

In one embodiment, the network-based commerce system
800 is accessed by a client program, such as for example a
browser 836 (e.g., the Internet Explorer distributed by
Microsoft Corp. of Redmond, Wash.) that executes on the
client machine 830 and accesses the network-based com-
merce system 800 via a network such as, for example, the
Internet 838. Other examples of networks that a client may
utilize to access the network-based commerce system 800
include a wide area network (WAN), a local area network
(LAN), a wireless network (e.g., a cellular network), the
Public Switched Telephone Network (PSTN) network, or the
like. The client program that executes on the client machine
830 may also communicate with the network-based com-
merce system 800 via the API servers 826.

US 9,448,944 B2

33

Exemplary Database Structure

FIG. 37 is a database diagram illustrating an exemplary
database 840, maintained by and accessed via the database
engine server 828, which at least partially implements and
supports the network-based commerce system 800. In one
embodiment a database engine server may maintain a plu-
rality of databases 840. For example, may maintain a master
write database 841 (e.g., including a plurality of horizontally
distributed databases), and a read-only database 843 that
may, for example, allow loads to be balanced appropriately.

The database 840 may, in one embodiment, be imple-
mented as a relational database, and includes a number of
tables having entries, or records, that are linked by indices
and key’s. In an alternative embodiment, the database 840
may be implemented as collection of objects in an object-
oriented database, as discussed by way of example in more
detail below.

The database 840 includes a user table 842 that contains
a record for each user of the network-based commerce
system 800. An exemplary record for each user is shown in
FIG. 39. A user may operate as a seller, a buyer, or both,
when utilizing the network-based commerce system 800.
The database 840 also includes listings tables 844 (see FIGS.
37 and 38) that may be linked to the user table 842. The
listings tables 844 may include a seller listings table 846 and
abidder listings table 848. A user record in the user table 842
may be linked to multiple listings that are being, or have
been, listed or offered for sale via the network-based com-
merce system 800. In one embodiment, a link indicates
whether the user is a seller or a bidder (or buyer) with respect
to listings for which records exist within the listings tables
844.

The database 840 also includes one or more divisions in
the form of categories provided in category tables 850. Each
record within the category table 850 may describe a respec-
tive category. In one embodiment, listings provided by the
system 800 are arranged in the categories. These categories
may be navigable by a user of the network-based commerce
system 800 to locate listings in specific categories. Thus,
categories provide a mechanism to locate listings that may
be browsed. In addition or instead, an alphanumeric search
mechanism may be provided by the search servers 818 to
allow a user to search for specific listings using search terms
or phrases. In one embodiment, the category table 850
describes multiple, hierarchical category data structures, and
includes multiple category records, each of which describes
the context of a particular category within the multiple
hierarchical category structures. For example, the category
table 850 may describe a number of real, or actual, catego-
ries to which listing records, within the listings tables 844,
may be linked.

The database 840 is also shown to include one or more
attributes tables 852. Each record within the attributes table
852 describes a respective attribute associated with a listing.
In one embodiment, the attributes table 852 describes mul-
tiple, hierarchical attribute data structures, and includes
multiple attribute records, each of which describes the
context of a particular attribute within the multiple hierar-
chical attribute structures. For example, the attributes table
852 may describe a number of real, or actual, attributes to
which listing records, within the listings tables 844, may be
linked. Also, the attributes table 852 may describe a number
of real, or actual, attributes to which categories, within the
category table 850, may be linked.

The database 840 may also include a note table 854
populated with note records that may be linked to one or
more listing records within the listings tables 844 and/or to

10

15

20

25

30

35

40

45

50

55

60

65

34

one or more user records within the user table 842. Each note
record within the note table 854 may include, inter alia, a
comment, description, history or other information pertain-
ing to a listing being offered via the network-based com-
merce system 800, to a user of the network-based commerce
system 800. The database 840 may also include a targeted
site table 856 populated with targeted site records that may
be linked to one or more listing records within the listings
tables 844 and/or to one or more user records within the user
table 842.

A number of other exemplary tables may also be linked to
the user table 842, namely a user past aliases table 858, a
feedback table 860, a feedback details table 862, a bids table
864, an accounts table 866, and an account balances table
868. In one embodiment, the database 840 also includes a
batch table 870, a batch listings table 872, and a listings wait
table 874. The data may be partitioned across multiple
database instances, and queries may have to be executed
against multiple database instances and query results may
need to be aggregated.

FIG. 40 shows a diagrammatic representation of a
machine in the exemplary form of a computer system 900
within which a set or sequence of instructions, for causing
the machine to perform any one of the methodologies
discussed herein, may be executed. In alternative embodi-
ments, the machine may comprise a network router, a
network switch, a network bridge, Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, set-top box
(STB) or any machine capable of executing a sequence of
instructions that specify actions to be taken by that machine.

The computer system 900 includes a processor 902, a
main memory 904 and a static memory 906, which com-
municate with each other via a bus 908. The computer
system 900 may further include a video display unit 910
(e.g., a liquid crystal display (LCD) or a cathode ray tube
(CRT)). The computer system 900 also includes an alpha-
numeric input device 912 (e.g., a keyboard), a cursor control
device 914 (e.g., a mouse), a disk drive unit 916, a signal
generation device 918 (e.g., a speaker) and a network
interface device 920 to interface the computer system to a
network 922.

The disk drive unit 916 includes a machine-readable
medium 924 on which is stored a set of instructions or
software 926 embodying any one, or all, of the methodolo-
gies described herein. The software 926 is also shown to
reside, completely or at least partially, within the main
memory 904 and/or within the processor 902. The software
926 may further be transmitted or received via the network
interface device 920. For the purposes of this specification,
the term “machine-readable medium” shall be taken to
include any medium which is capable of storing or encoding
a sequence of instructions for execution by the machine and
that cause the machine to perform any one of the method-
ologies of the present invention. The term “machine-read-
able medium” shall accordingly be taken to include, but not
be limited to, solid-state memories, optical disks, and mag-
netic disks. Further, while the software is shown in FIG. 40
to reside within a single device, it will be appreciated that the
software 926 could be distributed across multiple machines
or storage media, which may include the machine-readable
medium.

Thus, a method and system to process data requests in a
data processing system have been described. Although the
invention has been described with reference to specific
exemplary embodiments, it will be evident that various
modifications and changes may be made to these embodi-
ments without departing from the broader spirit and scope of

US 9,448,944 B2

35

the invention. Accordingly, the specification and drawings
are to be regarded in an illustrative rather than a restrictive
sense.

We claim:
1. A method to automatically generate query language in
an object to relational mapping system, the method com-
prising:
responsive to a request for data, selecting, by a computer
processor, a query template that is predefined, from a
plurality of query templates, the query template includ-
ing a procedural language/structured query language
(PL/SQL) query template and a logical table name;

receiving first content from a first source the first content
comprising a first attribute;

receiving second content from a second source, the sec-

ond content including a physical table name that is
identified by the second source based on the logical
table name;
generating a query statement based on the PL/SQL query
template and the logical table name, the query state-
ment including at least part of the first content, part of
the second content, and a return variable place holder
for receiving a return variable that is returned from a
PL/SQL routine in PL/SQL; and

executing the query statement to insert a record in the
database, the executing the query statement including
utilizing the return variable place holder in the query
statement to receive a record identifier from the
PL/SQL routine in the PL/SQL and assigning the
record identifier to an attribute in a prototype data
object in the object to relational mapping system, the
record identifier being accessible to the object to rela-
tional mapping system via the attribute in the prototype
data object and identifying the record that was inserted
into the database.

2. The method of claim 1, wherein the second source
includes a software routine that selects a plurality of query
language expressions in place of a bind position based on a
type of operation being performed.

3. The method of claim 1, wherein the first content
includes a software routine that selects the physical table
name from a plurality of physical table names.

4. The method of claim 1, wherein the first content
includes a set of columns that are determined by the second
source, the second source including a software routine that
selects the set of columns from a plurality of sets of columns.

5. The method of claim 1, wherein the first content
includes a set of columns and values that are determined by
the second source, the second source including a software
routine that selects the set of columns and values based on
at least one of a plurality of attributes in a data object that
have been modified and a plurality of attributes in the data
object that have been loaded.

6. The method of claim 1, further comprising passing a
hint value to a query engine, the hint value being selected
from a group of hints consisting of the first attribute in a
prototype data object and a hint hash table defined by
metadata in the prototype data object.

7. The method of claim 1, wherein the first content
includes an SQL join language construct that is determined
by the second source, the second source including a software
routine that determines whether the SQL join language
construct is required based on columns determined during
runtime.

8. The method of claim 1, wherein the receiving of the
first content is performed by a data access layer.

10

15

20

25

30

35

40

45

50

55

60

65

36

9. The method of claim 1, wherein the plurality of query
templates further includes a select query template, an update
query template, and a delete query template.

10. A system to automatically generate query language in
an object to relational mapping system, the system compris-
ing:

at least one processor and executable instructions acces-

sible on a computer-readable medium that, when
executed, cause the at least one processor to perform
operations comprising:
responsive to a request for data, selecting, by a computer
processor, a query template that is predefined, from a
plurality of query templates, the query template includ-
ing a procedural language/structured query language
(PL/SQL) query template and a logical table name;

receiving first content from a first source the first content
comprising a first attribute;

receiving second content from a second source, the sec-

ond content including a physical table name that is
identified by the second source based on the logical
table name;
generating a query statement based on the PL/SQL query
template and the logical table name, the query state-
ment including at least part of the first content, part of
the second content, and a return variable place holder
for receiving a return variable that is returned from a
PL/SQL routine in PL/SQL; and

executing the query statement to insert a record in the
database, the executing the query statement including
utilizing the return variable place holder in the query
statement to receive a record identifier from the
PL/SQL routine in the PL/SQL and assigning the
record identifier to an attribute in a prototype data
object in the object to relational mapping system, the
record identifier being accessible to the object to rela-
tional mapping system via the attribute in the prototype
data object and identifying the record that was inserted
into the database.

11. The system of claim 10, wherein the second source
includes a software routine that selects a plurality of query
language expressions in place of a bind position based on a
type of operation being performed.

12. The system of claim 10, wherein the first content
includes a software routine that selects the physical table
name from a plurality of physical table names.

13. The system of claim 10, wherein the first content
includes a set of columns that are determined by the second
source, the second source including a software routine that
selects the set of columns from a plurality of sets of columns.

14. The system of claim 10, wherein the first content
includes a set of columns and values that are determined by
the second source, the second source includes a software
routine that selects the set of columns and values based on
at least one of attributes in a data object that have been
modified and the attributes in the data object that have been
loaded.

15. The system of claim 10, further comprising passing a
hint value to a query engine, the hint value is selected from
a group of hints that consist of the first attribute in a
prototype data object and a hint hash table defined by
metadata in the prototype data object.

16. The system of claim 10, wherein the first content
includes a SQL join language construct that is determined by
the second source, the second source includes a software
routine that determines whether the SQL join language
construct is required based on columns determined during
runtime.

US 9,448,944 B2

37

17. The system of claim 10, wherein the operations further
comprise receiving the first content in a data access layer.
18. The system of claim 10, wherein the plurality of query
templates includes a select query template, an update query
template, and a delete query template.
19. A machine readable hardware storage device storing a
set of instructions that, when executed by a machine, cause
the machine to perform actions comprising:
responsive to a request for data, selecting, by a computer
processor, a query template that is predefined, from a
plurality of query templates, the query template includ-
ing a procedural language/structured query language
(PL/SQL) query template and a logical table name;

receiving first content from a first source the first content
comprising a first attribute;

receiving second content from a second source, the sec-

ond content including a physical table name that is
identified by the second source based on the logical
table name;
generating a query statement based on the PL/SQL query
template and the logical table name, the query state-
ment including at least part of the first content, part of
the second content, and a return variable place holder
for receiving a return variable that is returned from a
PL/SQL routine in PL/SQL; and

executing the query statement to insert a record in the
database, the executing the query statement including
utilizing the return variable place holder in the query
statement to receive a record identifier from the

10

15

20

25

38

PL/SQL routine in the PL/SQL and assigning the
record identifier to an attribute in a prototype data
object in the object to relational mapping system, the
record identifier being accessible to the object to rela-
tional mapping system via the attribute in the prototype
data object and identifying the record that was inserted
into the database.

20. The machine readable hardware storage device of
claim 19, wherein the second source includes a software
routine that selects a plurality of query language expressions
in place of a bind position based on a type of operation that
is performed.

21. The machine readable hardware storage device of
claim 19, further comprising passing a hint value to a query
engine, the hint value is selected from a group of hints that
consist of the first attribute in a prototype data object and a
hint hash table defined by metadata in the prototype data
object.

22. The machine readable hardware storage device of
claim 19, wherein the first content includes a SQL join
language construct that is determined by the second source,
the second source includes a software routine that deter-
mines whether the SQL join language construct is required,
based on columns determined during runtime.

23. The machine readable hardware storage device of
claim 19, further comprising a data access layer that receives
the first content.

